Spirolateral

From Wikipedia, the free encyclopedia
Simple spirolaterals
Spirolateral 3 90.svg
390° (4 cycles)
Spirolateral 3 108.svg
3108° (5 cycles)
Incomplete spirolateral 9 90.svg
990° ccw spiral
Spirolateral 9 90.svg
990° (4 cycles)
Incomplete spirolateral 100 120.svg
100120° spiral
Spirolateral 100 120.svg
100120° (4 cycles)

In Euclidean geometry, a spirolateral is a polygon created by a sequence of fixed vertex internal angles and sequential edge lengths 1,2,3,…,n which repeat until the figure closes. The number of repeats needed is called its cycles.[1] A simple spirolateral has only positive angles. A simple spiral approximates of a portion of an archimedean spiral. A general spirolateral allows positive and negative angles.

A spirolateral which completes in one turn is a simple polygon, while requiring more than 1 turn is a star polygon and must be self-crossing.[2] A simple spirolateral can be an equangular simple polygon <p> with p vertices, or an equiangular star polygon <p/q> with p vertices and q turns.

Spirolaterals were invented and named by Frank C. Odds as a teenager in 1962, as square spirolaterals with 90° angles, drawn on graph paper. In 1970, Odds discovered triangular and hexagonal spirolateral, with 60° and 120° angles, can be drawn on isometric[3] (triangular) graph paper.[4] Odds wrote to Martin Gardner who encouraged him to publish the results in Mathematics Teacher[5] in 1973.[3]

The process can be represented in turtle graphics, alternating turn angle and move forward instructions, but limiting the turn to a fixed rational angle.[2]

The smallest golygon is a spirolateral, 890°1,5, made with 8 right angles, and lengths 1 and 5 follow concave turns. Golygons are different in that they must close with a single sequence 1,2,3,..n, while a spirolateral will repeat that sequence until it closes.

Classifications[]

Varied cases
Spirolateral 6 90-fill.svg
Simple 690°, 2 cycle, 3 turn
Octagon Golygon.svg
Regular unexpected closed spirolateral, 890°1,5
Unexpected closed spirolateral 7 90.svg
Unexpectedly closed spirolateral 790°4
Spirolateral -1 2 60.svg
Crossed rectangle
(1,2,-1,-2)60°
Spirolateral 112-1-1-2 90.svgCrossed hexagon
(1,1,2,-1,-1,-2)90°
Equiangular pentagon2 60.svg
(-1.2.4.3.2)60°
Spirolateral 2-3-4-90.svg
(2…4)90°
Spirolateral 1-12-3432 60.svg
(2,1,-2,3,-4,3)120°

A simple spirolateral has turns all the same direction.[2] It is denoted by nθ, where n is the number of sequential integer edge lengths and θ is the internal angle, as any rational divisor of 360°. Sequential edge lengths can be expressed explicitly as (1,2,...,n)θ.

Note: The angle θ can be confusing because it represents the internal angle, while the supplementary turn angle can make more sense. These two angles are the same for 90°.

This defines an equiangular polygon of the form <kp/kq>, where angle θ = 180(1−2q/p), with k = n/d, and d = gcd(n,p). If d = n, the pattern never closes. Otherwise it has kp vertices and kq density. The cyclic symmetry of a simple spirolateral is p/d-fold.

A regular polygon, {p} is a special case of a spirolateral, 1180(1−2/p. A regular star polygon, {p/q}, is a special case of a spirolateral, 1180(1−2q/p. An isogonal polygon, is a special case spirolateral, 2180(1−2/p or 2180(1−2q/p.

A general spirolateral can turn left or right.[2] It is denoted by nθa1,...,ak, where ai are indices with negative or concave angles.[6] For example, 260°2 is a crossed rectangle with ±60° internal angles, bending left or right.

An unexpected closed spiralateral returns to the first vertex on a single cycle. Only general spirolaterals may not close. A golygon is a regular unexpected closed spiralateral that closes from the expected direction. An irregular unexpected closed spiralateral is one that returns to the first point but from the wrong direction. For example 790°4. It takes 4 cycles to return to the start in the correct direction.[2]

A modern spirolateral, also called a loop-de-loops[7] by Educator Anna Weltman, is denoted by (i1,...,in)θ, allowing any sequence of integers as the edge lengths, i1 to in.[8] For example, (2,3,4)90° has edge lengths 2,3,4 repeating. Opposite direction turns can be given a negative integer edge length. For example, a crossed rectangle can be given as (1,2,−1,−2)θ.

An open spirolateral never closes. A simple spirolateral, nθ, never closes if nθ is a multiple of 360°, gcd(p,n) = p. A general spirolateral can also be open if half of the angles are positive, half negative.

A (partial) infinite simple spirolateral, 490°

Closure[]

The number of cycles it takes to close a spirolateral, nθ, with k opposite turns, p/q=360/(180-θ) can be computed. Reduce fraction (p-2q)(n-2k)/2p = a/b. The figure repeats after b cycles, and complete a total turns. If b=1, the figure never closes.[1]

Explicitly, the number of cycles is 2p/d, where d=gcd((p-2q)(n-2k),2p). If d=2p, it closes on 1 cycle or never.

The number of cycles can be seen as the rotational symmetry order of the spirolateral.

n90°
n60°

Small simple spirolaterals[]

Spirolaterals can be constructed from any rational divisor of 360°. The first table's columns sample angles from small regular polygons and second table from star polygons, with examples up to n = 6.

An equiangular polygon <p/q> has p vertices and q density. <np/nq> can be reduced by d = gcd(n,p).

Small whole divisor angles
Simple spirolaterals (whole divisors p) nθ or (1,2,...,n)θ
θ 60° 90° 108° 120° 128 4/7° 135° 140° 144° 147 3/11° 150°
180-θ
Turn angle
120° 90° 72° 60° 51 3/7° 45° 40° 36° 32 8/11° 30°
nθ \ p 3 4 5 6 7 8 9 10 11 12
1θ
Regular
{p}
Regular polygon 3 annotated.svg
160°
{3}
Regular polygon 4 annotated.svg
190°
{4}
Regular polygon 5 annotated.svg
1108°
{5}
Regular polygon 6 annotated.svg
1120°
{6}
Regular polygon 7 annotated.svg
1128.57°
{7}
Regular polygon 8 annotated.svg
1135°
{8}
Regular polygon 9 annotated.svg
1140°
{9}
Regular polygon 10 annotated.svg
1144°
{10}
Regular polygon 11 annotated.svg
1147.27°
{11}
Regular polygon 12 annotated.svg
1150°
{12}
2θ
Isogonal
<2p/2>
Spirolateral 2 60.svg
260°
<6/2>
Spirolateral 2 90.svg
290°
<8/2> → <4>
Spirolateral 2 108.svg
2108°
<10/2>
Spirolateral 2 120.svg
2120°
<12/2> → <6>
Spirolateral 2 129.svg
2128.57°
<14/2>
Spirolateral 2 135.svg
2135°
<16/2> → <8>
Spirolateral 2 140.svg
2140°
<18/2>
Spirolateral 2 144.svg
2144°
<20/2> → <10>
Spirolateral 2 147.svg
2147°
<22/2>
Spirolateral 2 150.svg
2150°
<24/2> → <12>
3θ
2-isogonal
<3p/3>
Spirolateral 3 60.svg
360°
open
Spirolateral 3 90.svg
390°
<12/3>
Spirolateral 3 108.svg
3108°
<15/3>
Spirolateral 3 120.svg
3120°
<18/3> → <6>
Spirolateral 3 129.svg
3128.57°
<21/3>
Spirolateral 3 135.svg
3135°
<24/3>
Spirolateral 3 140.svg
3140°
<27/3> → <9>
Spirolateral 3 144.svg
3144°
<30/3>
Spirolateral 3 147.svg
3147°
<33/3>
Spirolateral 3 150.svg
3150°
<36/3> → <12>
4θ
3-isogonal
<4p/4>
Spirolateral 4 60.svg
460°
<12/4>
Spirolateral 4 90b.svg
490°
open
Spirolateral 4 108.svg
4108°
<20/4>
Spirolateral 4 120.svg
4120°
<24/4> → <12/2>
Spirolateral 4 129.svg
4128.57°
<28/4>
Spirolateral 4 135.svg
4135°
<32/4> → <8>
Spirolateral 4 140.svg
4140°
<36/4>
Spirolateral 4 144.svg
4144°
<40/4> → <20/2>
Spirolateral 4 147.svg
4147°
<44/4>
Spirolateral 4 150.svg
4150°
<48/4> → <12>
5θ
4-isogonal
<5p/5>
Spirolateral 5 60.svg
560°
<15/5>
Spirolateral 5 90.svg
590°
<20/5>
Spirolateral 5 108.svg
5108°
open
Spirolateral 5 120.svg
5120°
<30/5>
Spirolateral 5 129.svg
5128.57°
<35/5>
Spirolateral 5 135.svg
5135°
<40/5>
Spirolateral 5 140.svg
5140°
<45/5>
Spirolateral 5 144.svg
5144°
<50/5> → <10>
Spirolateral 5 147.svg
5147°
<55/5>
Spirolateral 5 150.svg
5150°
<60/5>
6θ
5-isogonal
<6p/6>
Spirolateral 6 60.svg
660°
Open
Spirolateral 6 90.svg
690°
<24/6> → <12/3>
Spirolateral 6 108.svg
6108°
<30/6>
Spirolateral 6 120.svg
6120°
Open
Spirolateral 6 129.svg
6128.57°
<42/6>
Spirolateral 6 135.svg
6135°
<48/6> → <24/3>
Spirolateral 6 140.svg
6140°
<54/6> → <18/2>
Spirolateral 6 144.svg
6144°
<60/6> → <30/3>
Spirolateral 6 147.svg
6147°
<66/6>
Spirolateral 6 150.svg
6150°
<72/6> → <12>
Small rational divisor angles
Simple spirolaterals (rational divisors p/q) nθ or (1,2,...,n)θ
θ 15° 16 4/11° 20° 25 5/7° 30° 36° 45° 49 1/11° 72° 77 1/7° 81 9/11° 100° 114 6/11°
180-θ
Turn angle
165° 163 7/11° 160° 154 2/7° 150° 144° 135° 130 10/11° 108° 102 6/7° 98 2/11° 80° 65 5/11°
nθ \ p/q 24/11 11/5 9/4 7/3 12/5 5/2 8/3 11/4 10/3 7/2 11/3 9/2 11/2
1θ
Regular
{p/q}
Regular star polygon 24-11.svg
115°
{24/11}
Regular star polygon 11-5.svg
116.36°
{11/5}
Regular star polygon 9-4.svg
120°
{9/4}
Regular star polygon 7-3.svg
125.71°
{7/3}
Regular star polygon 12-5.svg
130°
{12/5}
Regular star polygon 5-2.svg
136°
{5/2}
Regular star polygon 8-3.svg
145°
{8/3}
Regular star polygon 11-4.svg
149.10°
{11/4}
Regular star polygon 10-3.svg
172°
{10/3}
Regular star polygon 7-2.svg
177.14°
{7/2}
Regular star polygon 11-3.svg
181.82°
{11/3}
Regular star polygon 9-2.svg
1100°
{9/2}
Regular star polygon 11-2.svg
1114.55°
{11/2}
2θ
Isogonal
<2p/2q>
Spirolateral 2 15.svg
215°
<48/22> → <24/11>
Spirolateral 2 16-fill.svg
216.36°
<22/10>
Spirolateral 2 20.svg
220°
<18/8>
Spirolateral 2 26.svg
225.71°
<14/6>
Spirolateral 2 30.svg
230°
<24/10> → <12/5>
Spirolateral 2 36.svg
236°
<10/4>
Spirolateral 2 45.svg
245°
<16/6> → <8/3>
Spirolateral 2 49-fill.svg
249.10°
<22/8>
Spirolateral 2 72.svg
272°
<20/6> → <10/3>
Spirolateral 2 77.svg
277.14°
<14/4>
Spirolateral 2 82-fill.svg
281.82°
<22/6>
Spirolateral 2 100.svg
2100°
<18/4>
Spirolateral 2 114-fill.svg
2114.55°
<22/4>
3θ
2-isogonal
<3p/3q>
Spirolateral 3 15.svg
315°
<72/33> → <24/11>
Spirolateral 3 16-fill.svg
316.36°
<33/15>
Spirolateral 3 20.svg
320°
<27/12> → <9/4>
Spirolateral 3 26.svg
325.71°
<21/9>
Spirolateral 3 30.svg
330°
<36/15> → <12/5>
Spirolateral 3 36.svg
336°
<15/6>
Spirolateral 3 45.svg
345°
<24/9>
Spirolateral 3 49-fill.svg
349.10°
<33/12>
Spirolateral 3 72.svg
372°
<30/9>
Spirolateral 3 77.svg
377.14°
<21/6>
Spirolateral 3 82-fill.svg
381.82°
<33/9>
Spirolateral 3 100.svg
3100°
<27/6> → <9/2>
Spirolateral 3 114-fill.svg
3114.55°
<33/6>
4θ
3-isogonal
<4p/4q>
Spirolateral 4 15.svg
415°
<96/44> → <24/11>
Spirolateral 4 16-fill.svg
416.36°
<44/20>
Spirolateral 4 20.svg
420°
<36/12>
Spirolateral 4 26.svg
425.71°
<28/4>
Spirolateral 4 30.svg
430°
<48/40> → <12/5>
Spirolateral 4 36.svg
436°
<20/8>
Spirolateral 4 45.svg
445°
<32/12> → <8/3>
Spirolateral 4 49-fill.svg
449.10°
<44/16>
Spirolateral 4 72.svg
472°
<40/12> → <20/6>
Spirolateral 4 77.svg
477.14°
<28/8>
Spirolateral 4 82-fill.svg
481.82°
<44/12>
Spirolateral 4 100.svg
4100°
<36/8>
Spirolateral 4 114-fill.svg
4114.55°
<44/8>
5θ
4-isogonal
<5p/5q>
Spirolateral 5 15.svg
515°
<120/55>
Spirolateral 5 16-fill.svg
516.36°
<55/25>
Spirolateral 5 20.svg
520°
<45/20>
Spirolateral 5 26.svg
525.71°
<35/15>
Spirolateral 5 30.svg
530°
<60/25>
Spirolateral 5 36.svg
536°
open
Spirolateral 5 45.svg
545°
<40/15>
Spirolateral 5 49-fill.svg
549.10°
<55/20>
Spirolateral 5 72.svg
572°
<50/15> → <10/3>
Spirolateral 5 77.svg
577.14°
<35/10>
Spirolateral 5 82-fill.svg
581.82°
<55/15>
Spirolateral 5 100.svg
5100°
<45/10>
Spirolateral 5 114-fill.svg
5114.55°
<55/10>
6θ
5-isogonal
<6p/6q>
Spirolateral 6 15.svg
615°
<144/66> → <24/11>
Spirolateral 6 16-fill.svg
616.36°
<66/30>
Spirolateral 6 20.svg
620°
<54/24> → <18/8>
Spirolateral 6 26.svg
625.71°
<42/18>
Spirolateral 6 30.svg
630°
<72/30> → <12/5>
Spirolateral 6 36.svg
636°
<30/12>
Spirolateral 6 45.svg
645°
<48/18> → <24/9>
Spirolateral 6 49-fill.svg
649.10°
<66/24>
Spirolateral 6 72.svg
672°
<60/18> → <30/9>
Spirolateral 6 77.svg
677.14°
<42/12>
Spirolateral 6 82-fill.svg
681.82°
<66/18>
Spirolateral 6 100.svg
6100°
<54/12> → <18/4>
Spirolateral 6 114-fill.svg
6114.55°
<66/12>

See also[]

  • Turtle graphics represent a computer language that defines an open or close path as move lengths and turn angles.

References[]

  1. ^ a b Gardner, M. Worm Paths Ch. 17 Knotted Doughnuts and Other Mathematical Entertainments New York: W. H. Freeman, pp. 205-221, 1986. [1]
  2. ^ a b c d e Abelson, Harold, diSessa, Andera, 1980, Turtle Geometry, MIT Press, pp.37-39, 120-122
  3. ^ a b Focus on...Spirolaterals Secondary Magazine Issue 78
  4. ^ [2] Frank Odds, British biochemist, 8/29/1945-7/7/2020
  5. ^ Odds, Frank C. Spirolaterals, Mathematics Teacher, Feb 1973, Volume 66: Issue 2, pp. 121–124 DOI
  6. ^ Weisstein, Eric W. "Spirolateral". MathWorld.
  7. ^ Anna Weltman, This is Not a Math Book A Graphic Activity Book, Kane Miller; Act Csm edition, 2017
  8. ^ "Practice Multiplication with Simple Spirolateral Math Art". 23 July 2015.
  • Alice Kaseberg Schwandt Spirolaterals: An advanced Investignation from an Elementary Standpoint, Mathematical Teacher, Vol 72, 1979, 166-169 [3]
  • Margaret Kenney and Stanley Bezuszka, Square Spirolaterals Mathematics Teaching, Vol 95, 1981, pp.22-27 [4]
  • Gascoigne, Serafim Turtle Fun LOGO for the Spectrum 48K pp 42-46 | Spirolaterals 1985
  • Wells, D. The Penguin Dictionary of Curious and Interesting Geometry London: Penguin, pp. 239-241, 1991.
  • Krawczyk, Robert, "Hilbert's Building Blocks", Mathematics & Design, The University of the Basque Country, pp. 281-288, 1998.
  • Krawczyk, Robert, Spirolaterals, Complexity from Simplicity, International Society of Arts, Mathematics and Architecture 99,The University of the Basque Country, pp. 293-299, 1999. [5]
  • Krawczyk, Robert J. The Art of Spirolateral reversals [6]

External links[]

Retrieved from ""