Straintronics

From Wikipedia, the free encyclopedia

Straintronics (from strain and electronics) is the study of how folds and mechanically induced stresses in a layer of two-dimensional materials can change their electrical properties.[1][2][3][4][5][6][7] It is distinct from twistronics in that the latter involves changes in the angle between two layers of 2D material. It is also distinct from, but similar to, the piezoelectric effects which are created by bending, twisting, or squeezing of certain material.

References[]

  1. ^ Atanasov, Victor; Saxena, Avadh (2011-04-08). "Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state" (PDF). Journal of Physics: Condensed Matter. 23 (17): 175301. arXiv:1101.5243. Bibcode:2011JPCM...23q5301A. doi:10.1088/0953-8984/23/17/175301. ISSN 0953-8984. PMID 21474883. S2CID 44663107.
  2. ^ Gent, Edd (2021-03-01). "Graphene 'Nano-Origami' Could Take Us Past the End of Moore's Law". Singularity Hub. Retrieved 2021-03-01.
  3. ^ Bukharaev, A A; Zvezdin, A K; Pyatakov, A P; Fetisov, Yu K (2018-12-31). "Straintronics: a new trend in micro- and nanoelectronics and materials science" (PDF). Physics-Uspekhi. 61 (12): 1175–1212. arXiv:1101.5243. Bibcode:2018PhyU...61.1175B. doi:10.3367/ufne.2018.01.038279. ISSN 1063-7869. S2CID 125910158.
  4. ^ "'Straintronics' debuts in graphene". Physics World. 2010-07-29. Retrieved 2021-03-01.
  5. ^ Sahalianov, Ihor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Cuniberti, Gianaurelio; Prylutskyy, Yuriy I. (2019-08-02). "Straintronics in graphene: Extra large electronic band gap induced by tensile and shear strains". Journal of Applied Physics. 126 (5): 054302. Bibcode:2019JAP...126e4302S. doi:10.1063/1.5095600. ISSN 0021-8979. S2CID 201246050.
  6. ^ "Straintronics". Materials Today. Retrieved 2021-03-01.
  7. ^ Azadparvar, Maliheh; Cheraghchi, Hosein (2019-12-04). "Straintronics in graphene nanoribbons". arXiv:1912.02017 [cond-mat.mes-hall].
Retrieved from ""