Strong inference

From Wikipedia, the free encyclopedia

In philosophy of science, strong inference is a model of scientific inquiry that emphasizes the need for alternative hypotheses, rather than a single hypothesis to avoid confirmation bias.

The term "strong inference" was coined by John R. Platt,[1] a biophysicist at the University of Chicago. Platt notes that some fields, such as molecular biology and high-energy physics, seem to adhere strongly to strong inference, with very beneficial results for the rate of progress in those fields.

The single hypothesis problem[]

The problem with single hypotheses, confirmation bias, was aptly described by Thomas Chrowder Chamberlin in 1897:

The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for [one’s] intellectual child springs into existence, and as the explanation grows into a definite theory [one’s] parental affections cluster about [the] offspring and it grows more and more dear .... There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory... The temptation to misinterpret results that contradict the desired hypothesis is probably irresistible.[2]

Despite the admonitions of Platt, reviewers of grant-applications often require "A Hypothesis" as part of the proposal (note the singular). Peer-review of research can help avoid the mistakes of single-hypotheses, but only so long as the reviewers are not in the thrall of the same hypothesis. If there is a shared enthrallment among the reviewers in a commonly believed hypothesis, then innovation becomes difficult because alternative hypotheses are not seriously considered, and sometimes not even permitted.

Strong Inference[]

The method, very similar to the scientific method, is described as:

  1. Devising alternative hypotheses;
  2. Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly as possible, exclude one or more of the hypotheses;
  3. Carrying out the experiment(s) so as to get a clean result;
  4. Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.

Criticisms[]

The original paper outlining strong inference has been criticized, particularly for overstating the degree that certain fields used this method.[3][4]

Strong inference plus[]

The limitations of Strong-Inference can be corrected by having two preceding phases:[2]

  1. An exploratory phase: at this point information is inadequate so observations are chosen randomly or intuitively or based on scientific creativity.
  2. A pilot phase: in this phase statistical power is determined by replicating experiments under identical experimental conditions.

These phases create the critical seed observation (s) upon which one can base alternative hypotheses.[2]

References[]

  1. ^ John R. Platt (1964). "Strong inference". Science. 146 (3642): 347–53. Bibcode:1964Sci...146..347P. doi:10.1126/science.146.3642.347. PMID 17739513.
  2. ^ a b c Don L. Jewett (1 January 2005). "What's wrong with single hypotheses? Why it is time for Strong-Inference-PLUS". Scientist (Philadelphia, Pa.). 19 (21): 10. PMC 2048741. PMID 17975652.
  3. ^ O'Donohue, William; Buchanan, Jeffrey A. (2001). "The weaknesses of strong inference". Behavior and Philosophy. Cambridge Center for Behavioral Studies. 29: 1–20.
  4. ^ Rowland H. Davis (2006). "Strong Inference: rationale or inspiration?". Perspectives in Biology and Medicine. 49 (2): 238–250. doi:10.1353/pbm.2006.0022. PMID 16702707.


Retrieved from ""