Synanceia nana

From Wikipedia, the free encyclopedia

Red Sea Stonefish
Synanceia nana.JPG

Least Concern (IUCN 3.1)[1]
Scientific classification edit
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Scorpaeniformes
Family: Synanceiidae
Genus: Synanceia
Species:
S. nana
Binomial name
Synanceia nana
Eschmeyer & , 1973

Synanceia nana is a species of venomous fish, regionally referred to as the Red Sea stonefish or Dwarf scorpionfish.

Description[]

Length up to 13.5 cm, described as "hazardous" due to the venom contained in its dorsal spines. Synanceia nana has 14-15 pectoral rays as well as 14 dorsal spines all possessing dark margins.[2] The anal fin is composed of three spines and four to six soft rays.[3] Dwarf scorpionfish, as the name would suggest, are relatively small compared to similar species in the genus, never exceeding 135mm.[2] Species in the genus Synanceia earn the name “stonefish” due to their gray color and dotting being similar to that of the stones and reefs they are native to.[4] Raised bumps or “warts” dot the surface.[3] They are also commonly coated in a slime that allows algae as well as sand particles to adhere to their body as a form of camouflage.[4]

Distribution[]

Western Indian Ocean: the Red Sea and the Persian Gulf at depths between 3.5-18 meters.[5][2][3]

Habitat[]

Members of the genus Synanceia are found hiding among rocks and coral in the shallow saltwater throughout temperate and tropical areas of the Indo-Pacific Region.[5] Due to their localization within waters as far North as the Red Sea, it can be inferred that dwarf scorpionfish are most comfortable in warmer waters ranging from 26℃ to 30℃ in ambient temperature.[6] Being a marine fish, Synanceia nana lives in waters with a salinity range of 37-40 ppt within its local region.[7]

Predation[]

Members of Synanceia are preyed on by multiple predators including sharks, rays and sea snakes.[8] This is possibly due to the venom excreted from their spines to be less effective against these specific organisms.[8]

Ecosystem roles[]

Not much documentation of the ecosystem effects of Synanceia nana are known, however it can be assumed with relative certainty that they play a role in population control of teleosts, polychaetes, crustaceans, and macro algae which they prey on.[9]

Behavior[]

Synanceia use their camouflage to blend into their environment for potential prey and to simultaneously conceal themselves from potential predators.[5] When confronted with a potential predator or being threatened, Synanceia erects its dorsal spines so that if vertical force is applied onto the spines, venom is excreted from its glands acting as a presynaptic neurotoxin.[5] Stonefish also use their camouflage for ambush predation as they half-bury themselves or sit between rocks waiting for prey.[10]

Development[]

With Synanceia nana being difficult to find, documentation of its life cycle has been relatively non-existent. However, it is known that members of the family Synanceiidae have been observed in a larval stage.[11] In other members of Scorpaeniformes, Scorpaena scrofa specifically, embryotic development was observed. The time between fertilization and hatching was measured at 30 hours and 25 minutes.[12]

Reproduction[]

While reproduction has not been well documented, reproduction is known to be carried out sexually among Scorpaeniformes due to males only possessing testes and not being sequential hermaphrodites.[13][14]

Life span[]

Due to poor documentation of Synanceia nana, observation of its life span is minimal. However, in a close relative, Scorpaena notata, life spans have been documented as up to 6 years for females and up to 8 years for males.[15]

Economic importance[]

Members of Synanceia are not used within the legal aquarium trade due to their highly venomous nature requiring great precautions to be taken when handling them. However, Synanceia vurrucosa, a close relative has reached new regions as a potential escapee.[2] This could imply that members of Synanceia are sold in illegal aquarium trades.

Conservation status[]

Synanceia nana is designated “Least Concern” by IUCN Red List due to their abundance as bycatch from fisheries within the Persian Gulf region.[16] While stone fish and scorpionfish are not caught to be eaten, their venom can be denatured through cooking as it is protein based.[10]

References[]

  1. ^ Motomura, H.; Matsuura, K.; Khan, M. (2018). "Synanceia nana". IUCN Red List of Threatened Species. 2018: e.T46102308A46665204. doi:10.2305/IUCN.UK.2018-2.RLTS.T46102308A46665204.en. Retrieved 18 November 2021.
  2. ^ a b c d Edelist, D., Spanier, E. & Golani, D. 2011, "EVIDENCE FOR THE OCCURRENCE OF THE INDO-PACIFIC STONEFISH, SYNANCEIA VERRUCOSA (ACTINOPTERYGII: SCORPAENIFORMES: SYNANCEIIDAE), IN THE MEDITERRANEAN SEA", Acta Ichthyologica et Piscatoria, vol. 41, no. 2, pp. 129-131.
  3. ^ a b c Eschmeyer, W. N. and K. V. Rama-Rao 1973 (24 Oct.) Two new stonefishes (Pisces, Scorpaenidae) from the Indo-West Pacific, with a synopsis of the subfamily Synanceiinae. Proceedings of the California Academy of Sciences (Series 4) v. 39 (no. 18): 343-347.
  4. ^ a b Terence Khai, W.T., Han, Z.C., Tunku Sara, T.A., Teh, K.K., Low, T.H. & Wahab, N.A. 2016, "Stonefish envenomation of hand with impending compartment syndrome", Journal of Occupational Medicine and Toxicology, vol. 11.
  5. ^ a b c d Saggiomo, S.L., Firth, C., Wilson, D.T., Seymour, J., Miles, J.J. & Wong, Y. 2021, "The Geographic Distribution, Venom Components, Pathology and Treatments of Stonefish (0RW1S34RfeSDcfkexd09rT2Synanceia1RW1S34RfeSDcfkexd09rT2 spp.) Venom", Marine Drugs, vol. 19, no. 6, pp. 302
  6. ^ Banc-Prandi, G. & Fine, M. 2019, "Copper enrichment reduces thermal tolerance of the highly resistant Red Sea coral 0RW1S34RfeSDcfkexd09rT2Stylophora pistillata1RW1S34RfeSDcfkexd09rT2", Coral Reefs, vol. 38, no. 2, pp. 285-296.
  7. ^ Hereher, M.E. 2016, "Vulnerability assessment of the Saudi Arabian Red Sea coast to climate change", Environmental Earth Sciences, vol. 75, no. 1, pp. 1-13.
  8. ^ a b Harris, R.J. and Jenner, R.A., 2019. Evolutionary ecology of fish venom: adaptations and consequences of evolving a venom system. Toxins, 11(2), p.60.
  9. ^ Wu, Z., Zhang, X., Dromard, C.R., Tweedley, J.R. & Loneragan, N.R. 2019, "Partitioning of food resources among three sympatric scorpionfish (Scorpaeniformes) in coastal waters of the northern Yellow Sea", Hydrobiologia, vol. 826, no. 1, pp. 331-351.
  10. ^ a b Khoo, H.E., 2002. Bioactive proteins from stonefish venom. Clinical and experimental pharmacology and physiology, 29(9), pp.802-806.
  11. ^ Li, K., Yin, J., Huang, L. & Lin, Z. 2014, "Seasonal variations in diversity and abundance of surface ichthyoplankton in the northern South China Sea", Acta Oceanologica Sinica, vol. 33, no. 12, pp. 145-154.
  12. ^ ŠEGvIĆ, T., GRUBIŠIĆ, L., KATAvIĆ, I., PALLAORO, A. and DULČIĆ, J., 2007. Embryonic and larval development of largescaled scorpionfish Scorpaena scrofa (Scorpaenidae). Cybium, 31(4), pp.465-470.
  13. ^ Koya, Y., Hayakawa, Y., Markevich, A. & Munehara, H. 2011, "Comparative studies of testicular structure and sperm morphology among copulatory and non-copulatory sculpins (Cottidae: Scorpaeniformes: Teleostei)", Ichthyological Research, vol. 58, no. 2, pp. 109-125.
  14. ^ Fairbairn, D.J. (2013). Odd couples: extraordinary differences between the sexes in the animal kingdom. [online] Open WorldCat. Available at: http://www.worldcat.org/oclc/820118780 [Accessed 28 Oct. 2021].
  15. ^ Ordines, F., Quetglas, A., Massutí, E. and Moranta, J., 2009. Habitat preferences and life history of the red scorpion fish, Scorpaena notata, in the Mediterranean. Estuarine, Coastal and Shelf Science, 85(4), pp.537-546.
  16. ^ Chen, W., Almatar, S., Alsaffar, A. and Yousef, A.R. (2012). Retained and Discarded Bycatch from Kuwait’s Shrimp Fishery. Aquatic Science and Technology, 1(1)
  • Froese, Rainer; Pauly, Daniel (eds.) (2005). "Synanceia nana" in FishBase. 10 2005 version. Fishbase species 12085
  • Edelist, D., Spanier, E. & Golani, D. 2011, "EVIDENCE FOR THE OCCURRENCE OF THE INDO-PACIFIC STONEFISH, SYNANCEIA VERRUCOSA (ACTINOPTERYGII: SCORPAENIFORMES: SYNANCEIIDAE), IN THE MEDITERRANEAN SEA", Acta Ichthyologica et Piscatoria, vol. 41, no. 2, pp. 129-131.
  • Saggiomo, S.L., Firth, C., Wilson, D.T., Seymour, J., Miles, J.J. & Wong, Y. 2021, "The Geographic Distribution, Venom Components, Pathology and Treatments of Stonefish (0RW1S34RfeSDcfkexd09rT2Synanceia1RW1S34RfeSDcfkexd09rT2 spp.) Venom", Marine Drugs, vol. 19, no. 6, pp. 302
  • Banc-Prandi, G. & Fine, M. 2019, "Copper enrichment reduces thermal tolerance of the highly resistant Red Sea coral 0RW1S34RfeSDcfkexd09rT2Stylophora pistillata1RW1S34RfeSDcfkexd09rT2", Coral Reefs, vol. 38, no. 2, pp. 285-296.
  • Hereher, M.E. 2016, "Vulnerability assessment of the Saudi Arabian Red Sea coast to climate change", Environmental Earth Sciences, vol. 75, no. 1, pp. 1-13.
  • Terence Khai, W.T., Han, Z.C., Tunku Sara, T.A., Teh, K.K., Low, T.H. & Wahab, N.A. 2016, "Stonefish envenomation of hand with impending compartment syndrome", Journal of Occupational Medicine and Toxicology, vol. 11.
  • Li, K., Yin, J., Huang, L. & Lin, Z. 2014, "Seasonal variations in diversity and abundance of surface ichthyoplankton in the northern South China Sea", Acta Oceanologica Sinica, vol. 33, no. 12, pp. 145-154.
  • Koya, Y., Hayakawa, Y., Markevich, A. & Munehara, H. 2011, "Comparative studies of testicular structure and sperm morphology among copulatory and non-copulatory sculpins (Cottidae: Scorpaeniformes: Teleostei)", Ichthyological Research, vol. 58, no. 2, pp. 109-125.
  • Fairbairn, D.J. (2013). Odd couples: extraordinary differences between the sexes in the animal kingdom. [online] Open WorldCat. Available at: http://www.worldcat.org/oclc/820118780 [Accessed 28 Oct. 2021].
  • ŠEGvIĆ, T., GRUBIŠIĆ, L., KATAvIĆ, I., PALLAORO, A. and DULČIĆ, J., 2007. Embryonic and larval development of largescaled scorpionfish Scorpaena scrofa (Scorpaenidae). Cybium, 31(4), pp.465-470.
  • Ordines, F., Quetglas, A., Massutí, E. and Moranta, J., 2009. Habitat preferences and life history of the red scorpion fish, Scorpaena notata, in the Mediterranean. Estuarine, Coastal and Shelf Science, 85(4), pp.537-546.
  • Wu, Z., Zhang, X., Dromard, C.R., Tweedley, J.R. & Loneragan, N.R. 2019, "Partitioning of food resources among three sympatric scorpionfish (Scorpaeniformes) in coastal waters of the northern Yellow Sea", Hydrobiologia, vol. 826, no. 1, pp. 331-351.
  • Harris, R.J. and Jenner, R.A., 2019. Evolutionary ecology of fish venom: adaptations and consequences of evolving a venom system. Toxins, 11(2), p.60.
  • Khoo, H.E., 2002. Bioactive proteins from stonefish venom. Clinical and experimental pharmacology and physiology, 29(9), pp.802-806.
  • Chen, W., Almatar, S., Alsaffar, A. and Yousef, A.R. (2012). Retained and Discarded Bycatch from Kuwait’s Shrimp Fishery. Aquatic Science and Technology, 1(1).
  • Eschmeyer, W. N. and K. V. Rama-Rao 1973 (24 Oct.) Two new stonefishes (Pisces, Scorpaenidae) from the Indo-West Pacific, with a synopsis of the subfamily Synanceiinae. Proceedings of the California Academy of Sciences (Series 4) v. 39 (no. 18): 343-347.


Retrieved from ""