Syndetic set
In mathematics, a syndetic set is a subset of the natural numbers, having the property of "bounded gaps": that the sizes of the gaps in the sequence of natural numbers is bounded.
Definition[]
A set is called syndetic if for some finite subset F of
where . Thus syndetic sets have "bounded gaps"; for a syndetic set , there is an integer such that for any .
See also[]
References[]
- J. McLeod, "Some Notions of Size in Partial Semigroups", Topology Proceedings, Vol. 25 (2000), pp. 317–332
- Vitaly Bergelson, "Minimal Idempotents and Ergodic Ramsey Theory", Topics in Dynamics and Ergodic Theory 8–39, London Math. Soc. Lecture Note Series 310, Cambridge Univ. Press, Cambridge, (2003)
- Vitaly Bergelson, N. Hindman, "Partition regular structures contained in large sets are abundant", J. Comb. Theory (Series A) 93 (2001), pp. 18–36
Categories:
- Semigroup theory
- Ergodic theory