In mathematics , a Newtonian series , named after Isaac Newton , is a sum over a sequence
a
n
{\displaystyle a_{n}}
written in the form
f
(
s
)
=
∑
n
=
0
∞
(
−
1
)
n
(
s
n
)
a
n
=
∑
n
=
0
∞
(
−
s
)
n
n
!
a
n
{\displaystyle f(s)=\sum _{n=0}^{\infty }(-1)^{n}{s \choose n}a_{n}=\sum _{n=0}^{\infty }{\frac {(-s)_{n}}{n!}}a_{n}}
where
(
s
n
)
{\displaystyle {s \choose n}}
is the binomial coefficient and
(
s
)
n
{\displaystyle (s)_{n}}
is the falling factorial . Newtonian series often appear in relations of the form seen in umbral calculus .
List [ ]
The generalized binomial theorem gives
(
1
+
z
)
s
=
∑
n
=
0
∞
(
s
n
)
z
n
=
1
+
(
s
1
)
z
+
(
s
2
)
z
2
+
⋯
.
{\displaystyle (1+z)^{s}=\sum _{n=0}^{\infty }{s \choose n}z^{n}=1+{s \choose 1}z+{s \choose 2}z^{2}+\cdots .}
A proof for this identity can be obtained by showing that it satisfies the differential equation
(
1
+
z
)
d
(
1
+
z
)
s
d
z
=
s
(
1
+
z
)
s
.
{\displaystyle (1+z){\frac {d(1+z)^{s}}{dz}}=s(1+z)^{s}.}
The digamma function :
ψ
(
s
+
1
)
=
−
γ
−
∑
n
=
1
∞
(
−
1
)
n
n
(
s
n
)
.
{\displaystyle \psi (s+1)=-\gamma -\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n}}{s \choose n}.}
The Stirling numbers of the second kind are given by the finite sum
{
n
k
}
=
1
k
!
∑
j
=
0
k
(
−
1
)
k
−
j
(
k
j
)
j
n
.
{\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}={\frac {1}{k!}}\sum _{j=0}^{k}(-1)^{k-j}{k \choose j}j^{n}.}
This formula is a special case of the k th forward difference of the monomial x n evaluated at x = 0:
Δ
k
x
n
=
∑
j
=
0
k
(
−
1
)
k
−
j
(
k
j
)
(
x
+
j
)
n
.
{\displaystyle \Delta ^{k}x^{n}=\sum _{j=0}^{k}(-1)^{k-j}{k \choose j}(x+j)^{n}.}
A related identity forms the basis of the Nörlund–Rice integral :
∑
k
=
0
n
(
n
k
)
(
−
1
)
n
−
k
s
−
k
=
n
!
s
(
s
−
1
)
(
s
−
2
)
⋯
(
s
−
n
)
=
Γ
(
n
+
1
)
Γ
(
s
−
n
)
Γ
(
s
+
1
)
=
B
(
n
+
1
,
s
−
n
)
,
s
∉
{
0
,
…
,
n
}
{\displaystyle \sum _{k=0}^{n}{n \choose k}{\frac {(-1)^{n-k}}{s-k}}={\frac {n!}{s(s-1)(s-2)\cdots (s-n)}}={\frac {\Gamma (n+1)\Gamma (s-n)}{\Gamma (s+1)}}=B(n+1,s-n),s\notin \{0,\ldots ,n\}}
where
Γ
(
x
)
{\displaystyle \Gamma (x)}
is the Gamma function and
B
(
x
,
y
)
{\displaystyle B(x,y)}
is the Beta function .
The trigonometric functions have umbral identities:
∑
n
=
0
∞
(
−
1
)
n
(
s
2
n
)
=
2
s
/
2
cos
π
s
4
{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}{s \choose 2n}=2^{s/2}\cos {\frac {\pi s}{4}}}
and
∑
n
=
0
∞
(
−
1
)
n
(
s
2
n
+
1
)
=
2
s
/
2
sin
π
s
4
{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}{s \choose 2n+1}=2^{s/2}\sin {\frac {\pi s}{4}}}
The umbral nature of these identities is a bit more clear by writing them in terms of the falling factorial
(
s
)
n
{\displaystyle (s)_{n}}
. The first few terms of the sin series are
s
−
(
s
)
3
3
!
+
(
s
)
5
5
!
−
(
s
)
7
7
!
+
⋯
{\displaystyle s-{\frac {(s)_{3}}{3!}}+{\frac {(s)_{5}}{5!}}-{\frac {(s)_{7}}{7!}}+\cdots }
which can be recognized as resembling the Taylor series for sin x , with (s )n standing in the place of x n .
In analytic number theory it is of interest to sum
∑
k
=
0
B
k
z
k
,
{\displaystyle \!\sum _{k=0}B_{k}z^{k},}
where B are the Bernoulli numbers . Employing the generating function its Borel sum can be evaluated as
∑
k
=
0
B
k
z
k
=
∫
0
∞
e
−
t
t
z
e
t
z
−
1
d
t
=
∑
k
=
1
z
(
k
z
+
1
)
2
.
{\displaystyle \sum _{k=0}B_{k}z^{k}=\int _{0}^{\infty }e^{-t}{\frac {tz}{e^{tz}-1}}dt=\sum _{k=1}{\frac {z}{(kz+1)^{2}}}.}
The general relation gives the Newton series
∑
k
=
0
B
k
(
x
)
z
k
(
1
−
s
k
)
s
−
1
=
z
s
−
1
ζ
(
s
,
x
+
z
)
,
{\displaystyle \sum _{k=0}{\frac {B_{k}(x)}{z^{k}}}{\frac {1-s \choose k}{s-1}}=z^{s-1}\zeta (s,x+z),}
[citation needed ]
where
ζ
{\displaystyle \zeta }
is the Hurwitz zeta function and
B
k
(
x
)
{\displaystyle B_{k}(x)}
the Bernoulli polynomial . The series does not converge, the identity holds formally.
Another identity is
1
Γ
(
x
)
=
∑
k
=
0
∞
(
x
−
a
k
)
∑
j
=
0
k
(
−
1
)
k
−
j
Γ
(
a
+
j
)
(
k
j
)
,
{\displaystyle {\frac {1}{\Gamma (x)}}=\sum _{k=0}^{\infty }{x-a \choose k}\sum _{j=0}^{k}{\frac {(-1)^{k-j}}{\Gamma (a+j)}}{k \choose j},}
which converges for
x
>
a
{\displaystyle x>a}
. This follows from the general form of a Newton series for equidistant nodes (when it exists, i.e. is convergent)
f
(
x
)
=
∑
k
=
0
(
x
−
a
h
k
)
∑
j
=
0
k
(
−
1
)
k
−
j
(
k
j
)
f
(
a
+
j
h
)
.
{\displaystyle f(x)=\sum _{k=0}{{\frac {x-a}{h}} \choose k}\sum _{j=0}^{k}(-1)^{k-j}{k \choose j}f(a+jh).}
See also [ ]
References [ ]