Thiazolidine

From Wikipedia, the free encyclopedia
Thiazolidine
Thiazolidine numbering.png
Names
Preferred IUPAC name
1,3-Thiazolidine[1]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.275 Edit this at Wikidata
UNII
  • InChI=1S/C3H7NS/c1-2-5-3-4-1/h4H,1-3H2 ☒N
    Key: OGYGFUAIIOPWQD-UHFFFAOYSA-N ☒N
  • C1CSCN1
Properties
C3H7NS
Molar mass 89.16 g·mol−1
Density 1.131 g/cm3[2]
Boiling point 72 to 75 °C (162 to 167 °F; 345 to 348 K)[2] at 25 torr
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  (what is checkY☒N ?)
Infobox references

Thiazolidine is a heterocyclic organic compound with the formula (CH2)3(NH)S. It is a 5-membered saturated ring with a thioether group and an amine group in the 1 and 3 positions. It is a sulfur analog of oxazolidine. Thiazolidine is a colorless liquid.

Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin.

Preparation[]

Thiazolidine is prepared as it was in its first reported synthesis, by the condensation of cysteamine and formaldehyde.[3] Other thiazolidines may be synthesized by similar condensations. A notable derivative is 4-carboxythiazolidine, derived from formaldehyde and cysteine.

Derivatives[]

N-Methyl-2-thiazolidinethione is an accelerator for the vulcanization of chloroprene rubbers.[4]

Thiazolidines functionalized with carbonyls at the 2 and 4 positions, the thiazolidinediones, are drugs used in the treatment of diabetes mellitus type 2. Rhodanine is a related bioactive species, featuring one carbonyl and one thiocarbonyl.

See also[]

References[]

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 142. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ a b Thiazolindine
  3. ^ Ratner, Sarah; Clarke, H. T. (1937). "Action of formaldehyde on cysteine". Journal of the American Chemical Society. 59: 200–6. doi:10.1021/ja01280a050.CS1 maint: uses authors parameter (link)
  4. ^ Rüdiger Schubart (2000). "Dithiocarbamic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_001.
Retrieved from ""