Tihiro Ohkawa

From Wikipedia, the free encyclopedia
Tihiro Ohkawa
Born(1928-01-03)January 3, 1928
DiedSeptember 27, 2014(2014-09-27) (aged 86)
Alma materUniversity of Tokyo
AwardsJames Clerk Maxwell Prize for Plasma Physics (1979)
Scientific career
FieldsPlasma Physics

Tihiro Ohkawa (Japanese: 大河千弘, Hepburn: Ōkawa Chihiro, January 3, 1928 - September 27, 2014)[1][2] was a Japanese physicist whose field of work was in plasma physics and fusion power. He was a pioneer in developing ways to generate electricity by nuclear fusion when he worked at General Atomics.[3] Ohkawa died September 27, 2014 in La Jolla, California at the age of 86.[3]

Early life and career[]

Ohkawa was born in Kanazawa on January 3, 1928.[4][5] He studied physics at the University of Tokyo in 1950, and was a member of the Yoshio Nishina group for researching cosmic altitude radiation for 16 years even during the World War II.[4] He was a researcher at CERN and at Midwestern State University before becoming a professor at the University of Tokyo. In 1960, he went to General Atomics, where he led a fusion research project and later became vice president and deputy chairman of the board.

In 1994, Ohkawa left General Atomics to found TOYO Technologies. In 2004, he was co-founder of Nano Fusion Technologies with Masano Nishikawa for the development of microfluidics. He was also a physics professor at the University of California, San Diego.

Scientific contributions[]

In 1955, Ohkawa independently came up with idea of the fixed-field alternating gradient accelerator (FFAG) together with Keith Symon and , which led to the development of the first prototype in 1956 by the Midwestern Universities Research Association (MURA). He then developed a procedure to stabilize instabilities in tokamaks using multipole magnetic fields with Donald Kerst in 1960,[6] which was then later confirmed by experiments.[7]

In 1968, Ohkawa demonstrated that the plasma-current multipole configuration used to trap plasmas was stable,[8] which resulted in the development of a series of tokamaks with vertically elongated plasma cross sections called the doublet.[4][9] This eventually led to General Atomics' DIII-D tokamak, which influenced the design and concept of ITER.[10]

Ohkawa was also involved in the use of radioactive isotopes in the separation of nuclear isotopes from nuclear waste (at the Archimedes Technology Group in San Diego, which he founded).[11]

Ohkawa holds over 50 patents, in areas such as tile accelerators, fusion technology and biotechnology.[12]

Honors and awards[]

In 1968, Ohkawa became a Fellow of the American Physical Society.[13] In 1979, he received the James Clerk Maxwell Prize for Plasma Physics for "his development of multi-current or doublet approach to the design of tokamaks with non-circular cross sections and for investigation of plasma confinement in toroidal multipoles".[14]

He also received the 1984 Fusion Power Associates Leadership Award.[15]

References[]

  1. ^ Amemiya, Takahisa (2009). 大河千弘と核融合研究 (PDF) (in Japanese). Nihon University. Retrieved 8 September 2018.
  2. ^ "Tihiro Ohkawa". www.aip.org. 2015-03-16. Retrieved 2020-02-25.
  3. ^ Jump up to: a b Robbins, Gary. "Renowned physicist Ohkawa dies at 86". The San Diego Union-Tribune. Retrieved 2018-09-08.
  4. ^ Jump up to: a b c Maisel, Merry (2014-10-29). "Tihiro Ohkawa". Physics Today. doi:10.1063/pt.5.6106.
  5. ^ 日本人名大辞典+Plus, デジタル版. "大河千弘(おおかわ ちひろ)とは". コトバンク (in Japanese). Retrieved 2020-02-24.
  6. ^ Ohkawa, T.; Kerst, D. W. (1961). "Stable Plasma Confinement by Multipole Fields". Physical Review Letters. 7 (2): 41–42. Bibcode:1961PhRvL...7...41O. doi:10.1103/physrevlett.7.41. ISSN 0031-9007.
  7. ^ Ohkawa, T.; Yoshikawa, M.; Kribel, R. E.; Schupp, A. A.; Jensen, T. H. (1970). "Plasma Confinement in dc Octopole". Physical Review Letters. 24 (3): 95–98. Bibcode:1970PhRvL..24...95O. doi:10.1103/physrevlett.24.95. ISSN 0031-9007.
  8. ^ Ohkawa, T.; Voorhies, H. G. (1969). "Plasma-Current Multipole Experiments". Physical Review Letters. 22 (24): 1275–1277. Bibcode:1969PhRvL..22.1275O. doi:10.1103/physrevlett.22.1275. ISSN 0031-9007.
  9. ^ Meade, Dale (2009). "50 years of fusion research". Nuclear Fusion. 50 (1): 014004. doi:10.1088/0029-5515/50/1/014004. ISSN 0029-5515.
  10. ^ "diii-d:home [MFE: DIII-D and Theory]". fusion.gat.com. Retrieved 2020-02-24.
  11. ^ Cluggish, B.P.; Ohkawa, T.; Agnew, S.F.; Freeman, R.L.; Miller, R.L.; Putvinski, S.; Sevier, L.; Umstadter, K.R. (2001). "Separation of radionuclides from nuclear waste by a plasma mass filter". IEEE Conference Record - Abstracts. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference (Cat. No.01CH37255). IEEE: 323. doi:10.1109/ppps.2001.961000. ISBN 0-7803-7141-0.
  12. ^ "FPA Program Notes". aries.ucsd.edu. Retrieved 2020-02-24.
  13. ^ "APS Fellow Archive". www.aps.org. Retrieved 2020-02-24.
  14. ^ "1979 James Clerk Maxwell Prize for Plasma Physics Recipient". American Physical Society. Retrieved 2020-02-24.
  15. ^ "FPA Awards". fusionpower.org. Retrieved 2020-02-24.

External links[]

Retrieved from ""