Trimethylene carbonate

From Wikipedia, the free encyclopedia
Trimethylene carbonate
Trimethylene carbonate.png
Names
Preferred IUPAC name
1,3-Dioxan-2-one
Identifiers
  • 2453-03-4
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.114.239 Edit this at Wikidata
UNII
  • InChI=1S/C4H6O3/c5-4-6-2-1-3-7-4/h1-3H2
    Key: YFHICDDUDORKJB-UHFFFAOYSA-N
  • InChI=1/C4H6O3/c5-4-6-2-1-3-7-4/h1-3H2
    Key: YFHICDDUDORKJB-UHFFFAOYAZ
  • O=C1OCCCO1
Properties
C4H6O3
Molar mass 102.089 g·mol−1
Appearance white solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Trimethylene carbonate or 1,3-propylene carbonate is a 6-membered cyclic carbonate ester. It is a colourless solid that upon heating or catalytic ring-opening[1] converts to the poly(trimethylene carbonate) (PTC). Such polymers are called aliphatic polycarbonates and are of interest for potential biomedical applications. An isomeric derivative is propylene carbonate, a colourless liquid that does not spontaneously polymerize.

Preparation[]

This compound may be prepared from 1,3-propanediol and ethyl chloroformate (a phosgene substitute), or from oxetane and carbon dioxide with an appropriate catalyst:[2]

HOC3H6OH + ClCO2C2H5 → C3H6O2CO + C2H5OH + HCl
C3H6O + CO2 → C3H6O2CO

This cyclic carbonate undergoes ring-opening polymerization to give poly(trimethylene carbonate), abbreviated PTC.[2]

Medical devices[]

The polymer PTC is of commercial interest as a biodegradable polymer with biomedical applications.[3] A block copolymer of glycolic acid and trimethylene carbonate (TMC) is the material of the Maxon suture, a monofilament resorbable suture which was introduced in the mid-1980s.[4] The same material is used in other resorbable medical devices.[5][6][7][8]

References[]

  1. ^ Chan, J. M. W.; Zhang, X.; Sardon, H.; Engler, A. C.; Fox, C. H.; Frank, C. W.; Waymouth, R. M.; Hedrick, J. L. (2015). "Organocatalytic Ring-Opening Polymerization of Trimethylene Carbonate to Yield a Biodegradable Polycarbonate". J. Chem. Educ. 92: 708–713. doi:10.1021/ed500595k.
  2. ^ a b Pyo, Sang-Hyun; Persson, Per; Mollaahmad, M. Amin; Sörensen, Kent; Lundmark, Stefan; Hatti-Kaul, Rajni (2012). "Cyclic carbonates as monomers for phosgene- and isocyanate-free polyurethanes and polycarbonates". Pure Appl. Chem. 84 (3): 637. doi:10.1351/PAC-CON-11-06-14.
  3. ^ Engelberg, Israel; Kohn, Joachim (1991). "Physicomechanical properties of degradable polymers used in medical applications: a comparative study". Biomaterials. 12 (3): 292–304. doi:10.1016/0142-9612(91)90037-B.
  4. ^ Katz, AR; Mukherjee, DP; Kaganov, AL; Gordon, S (September 1985). "A new synthetic monofilament absorbable suture made from polytrimethylene carbonate". Surgery, gynecology & obstetrics. 161 (3): 213–22. PMID 3898441.
  5. ^ Nylund, Adam M.; Chen, Chi-Ya; Höglund, Odd V.; Campbell, Bonnie G.; Fransson, Boel A. (July 2019). "Evaluation of a resorbable self-locking ligation device for performing peripheral lung biopsies in a caprine cadaveric model". Veterinary Surgery. 48 (5): 845–849. doi:10.1111/vsu.13171.
  6. ^ Nylund, Adam M.; Höglund, Odd V.; Fransson, Boel A. (15 October 2018). "Thoracoscopic-assisted lung lobectomy in cat cadavers using a resorbable self-locking ligation device". Veterinary Surgery. 48 (4): 563–569. doi:10.1111/vsu.13109.
  7. ^ da Mota Costa, Matheus Roberto; de Abreu Oliveira, André Lacerda; de Moura Vidal, Leonardo Waldstein; Moran Ramos, Renato; de Oliveira Campos, Ingrid; Hansson, Kerstin; Ley, Charles J; Olsson, Ulf; Borg, Niklas Olov; Höglund, Odd Viking (13 April 2019). "Comparison of macroscopic resorption time for a self-locking device and suture material in ovarian pedicle ligation in dogs". Veterinary Record. 184 (15): 478–478. doi:10.1136/vr.104732.
  8. ^ Guedes, Rogério Luizari; Höglund, Odd Viking; Brum, Juliana Sperotto; Borg, Niklas; Dornbusch, Peterson Triches (3 January 2018). "Resorbable Self-Locking Implant for Lung Lobectomy Through Video-Assisted Thoracoscopic Surgery: First Live Animal Application". Surgical Innovation. 25 (2): 158–164. doi:10.1177/1553350617751293.
Retrieved from ""