WASP-103

From Wikipedia, the free encyclopedia

Coordinates: Sky map 16h 37m 15.5754s, +07° 11′ 00.1190″

WASP-103
Observation data
Epoch J2000      Equinox J2000
Constellation Hercules
Right ascension 16h 37m 15.5766s[1]
Declination 07° 11′ 00.110″[1]
Apparent magnitude (V) 12.1[citation needed]
Characteristics
Evolutionary stage main-sequence star[2]
Spectral type F8[2]
Astrometry
Radial velocity (Rv)-40.3±1.4[1] km/s
Proper motion (μ) RA: -9.756[1] mas/yr
Dec.: 2.779[1] mas/yr
Parallax (π)1.8332 ± 0.1073[1] mas
Distance1,800 ± 100 ly
(550 ± 30 pc)
Details
Mass1.220+0.039
−0.036
[3] M
Radius1.436+0.052
−0.031
[3] R
Luminosity7.6[4] L
Surface gravity (log g)4.215±0.014[5] cgs
Temperature6110±160[6] K
Metallicity [Fe/H]0.06±0.13[3] dex
Rotational velocity (v sin i)10.60±0.90[3] km/s
Age4±1[3] Gyr
Other designations
Gaia DR2 4439085988769170432, 2MASS J16371556+0711000[7]
Database references
SIMBADdata

WASP-103 is a F-type main-sequence star located 1,800 ± 100 light-years (550 ± 30 parsecs) away in the constellation Hercules. Its surface temperature is 6110±160 Kelvin (K). The star's concentration of heavy elements is similar to that of the Sun.[3] WASP-103 is slightly younger than the Sun at 4±1 billion years.[3] The star is too hot for star spots to form; instead its surface is covered by numerous bright faculae.[8] The chromospheric activity of the star is elevated due to interaction with the giant planet on a close-in orbit.[6]

A multiplicity survey in 2015 found a suspected stellar companion to WASP-103, at a projected separation of 0.242±0.016″.[9]

Planetary system[]

In 2014 one super-Jupiter planet, named , was discovered by the transit method.[5] The planet is orbiting its host star in less than a day and may be close to the limit of tidal disruption.[10] Orbital decay was not detected by 2020.[11]

The planetary atmosphere contains water, and possibly hydrogen cyanide, Titanium(II) oxide,[8] or sodium.[12] The planet has an elevated carbon to oxygen molar fraction of 0.9, and may be a carbon planet.[2]

The planetary equilibrium temperature is 2484±67 K, although a big difference exists between the nightside and dayside. Dayside temperature is 2930±40 K, while nightside is 1880±40 K.[2]

The WASP-103 planetary system[3]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
1.455+0.090
−0.091
 MJ
0.01987+0.00020
−0.00021
0.9255456±0.0000013 <0.15 87.3±1.2° 1.528+0.073
−0.047
 RJ

References[]

  1. ^ Jump up to: a b c d e f Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. Gaia EDR3 record for this source at VizieR.
  2. ^ Jump up to: a b c d Kreidberg, Laura; Line, Michael R.; Parmentier, Vivien; Stevenson, Kevin B.; Louden, Tom; Bonnefoy, Mickäel; Faherty, Jacqueline K.; Henry, Gregory W.; Williamson, Michael H.; Stassun, Keivan; Beatty, Thomas G.; Bean, Jacob L.; Fortney, Jonathan J.; Showman, Adam P.; Désert, Jean-Michel; Arcangeli, Jacob (2018). "Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b fromHSTandSpitzer Phase Curve Observations". The Astronomical Journal. 156 (1): 17. arXiv:1805.00029. Bibcode:2018AJ....156...17K. doi:10.3847/1538-3881/aac3df. S2CID 56157823.
  3. ^ Jump up to: a b c d e f g h Bonomo, A. S.; et al. (2017). "The GAPS Programme with HARPS-N at TNG". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID 118923163.
  4. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  5. ^ Jump up to: a b Southworth, John; Mancini, L.; Ciceri, S.; Budaj, J.; Dominik, M.; Figuera Jaimes, R.; Haugbølle, T.; Jørgensen, U. G.; Popovas, A.; Rabus, M.; Rahvar, S.; von Essen, C.; Schmidt, R. W.; Wertz, O.; Alsubai, K. A.; Bozza, V.; Bramich, D. M.; Calchi Novati, S.; d'Ago, G.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Skottfelt, J.; Snodgrass, C.; Starkey, D.; Surdej, J. (2015). "High-precision photometry by telescope defocusing – VII. The ultrashort period planet WASP-103★". Monthly Notices of the Royal Astronomical Society. 447 (1): 711–721. arXiv:1411.2767. Bibcode:2015MNRAS.447..711S. doi:10.1093/mnras/stu2394.
  6. ^ Jump up to: a b Staab, D.; Haswell, C. A.; Smith, Gareth D.; Fossati, L.; Barnes, J. R.; Busuttil, R.; Jenkins, J. S. (2017). "SALT observations of the chromospheric activity of transiting planet hosts: Mass-loss and star–planet interactions". Monthly Notices of the Royal Astronomical Society. 466 (1): 738–748. arXiv:1612.01739. Bibcode:2017MNRAS.466..738S. doi:10.1093/mnras/stw3172.
  7. ^ "WASP-103". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2021-05-05.
  8. ^ Jump up to: a b Lechtenfeld, Olaf; Rupprecht, Maximilian (2021). "Universal form of the Nicolai map". Physical Review D. 104 (2): 021701. arXiv:2104.00012. Bibcode:2021PhRvD.104L1701L. doi:10.1103/PhysRevD.104.L021701. S2CID 232478874.
  9. ^ Wöllert, Maria; Brandner, Wolfgang (2015). "A Lucky Imaging search for stellar sources near 74 transit hosts". Astronomy & Astrophysics. 579: A129. arXiv:1506.05456. Bibcode:2015A&A...579A.129W. doi:10.1051/0004-6361/201526525. S2CID 118903879.
  10. ^ Gillon, M.; Anderson, D. R.; Collier-Cameron, A.; Delrez, L.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smith, A. M. S.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; Van Grootel, V.; West, R. G. (2014). "WASP-103 b: A new planet at the edge of tidal disruption". Astronomy & Astrophysics. 562: L3. arXiv:1401.2784. Bibcode:2014A&A...562L...3G. doi:10.1051/0004-6361/201323014. S2CID 53680974.
  11. ^ Patra, Kishore C.; Winn, Joshua N.; Holman, Matthew J.; Gillon, Michael; Burdanov, Artem; Jehin, Emmanuel; Delrez, Laetitia; Pozuelos, Francisco J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Kawauchi, Kiyoe; Terada, Yuka; Bouma, L. G.; Weinberg, Nevin N.; Broome, Madelyn (2020). "The Continuing Search for Evidence of Tidal Orbital Decay of Hot Jupiters". The Astronomical Journal. 159 (4): 150. arXiv:2002.02606. Bibcode:2020AJ....159..150P. doi:10.3847/1538-3881/ab7374. S2CID 211066260.
  12. ^ Wilson, Jamie; Gibson, Neale P.; Nikolov, Nikolay; Constantinou, Savvas; Madhusudhan, Nikku; Goyal, Jayesh; Barstow, Joanna K.; Carter, Aarynn L.; De Mooij, Ernst J W.; Drummond, Benjamin; Mikal-Evans, Thomas; Helling, Christiane; Mayne, Nathan J.; Sing, David K. (2020). "Ground-based transmission spectroscopy with FORS2: A featureless optical transmission spectrum and detection of H2O for the ultra-hot Jupiter WASP-103b". Monthly Notices of the Royal Astronomical Society. 497 (4): 5155–5170. arXiv:2007.13510. Bibcode:2020MNRAS.497.5155W. doi:10.1093/mnras/staa2307.
Retrieved from ""