WASP-76b

From Wikipedia, the free encyclopedia
WASP-76b
WASP-76 b (2020).png
Artistic image of WASP-76b (based on 2020 data)
Discovery
Discovered byR.G. West et al. (SuperWASP)[1]
Discovery dateOctober 21, 2013
Transit (including secondary eclipses)
Orbital characteristics
0.033±0.0005 AU
Eccentricity0
1.809886±0.000001[2] d
StarWASP-76
Physical characteristics
Mean radius
1.83±0.06 RJ
Mass0.92±0.03 MJ
Temperature2500±200 K[3]
An artist's illustration showing WASP-76b during its night hours.

WASP-76b is a hot Jupiter exoplanet discovered on October 21, 2013, it can be found in the constellation Pisces. It orbits an F-type star BD+01 316 (WASP-76) and it has a mass 0.92 times that of Jupiter.[4][5]

The planet equilibrium temperature is 1,920 °C (2,190 K), yet measured dayside temperature is still hotter at 2,227 ± 200 °C (2,500 ± 200 K).[3]

Study shows that WASP-76b seems to be the only planet in its star system.[6]

Combination of data from the Hubble and Spitzer space telescopes has allowed the detection of titanium oxide and traces of water in the atmosphere of WASP-76b though.[7] A later, higher-resolution spectrum, has features of ionized Li, Na, Mg, Ca, Mn, K, and Fe, but no ionized Ti, Cr, Ni, or molecular oxides of titanium, vanadium or zirconium were found.[8] Calcium presence was confirmed in 2021.[9][10]

The atmosphere of WASP-76b is cloudy and mostly grey, with a significant amount of thermal incandescence.[11]

Iron rain controversy[]

In March 2020, it was speculated the temperature on the planet could reach 2,400 °C (2,670 K) on the hot side, hot enough to vaporize neutral iron. If the night side of WASP-76b had temperatures down to at least 1,400 °C (1,670 K), the iron may condense then rain down as hot liquid iron on its surface.[12]

In May 2020, it was discovered what the previous spectra of WASP-76b, taken by the Hubble Space Telescope, were distorted by the light from a suspected stellar companion. Therefore, updated atmospheric model is cloudy hydrogen-helium envelope, non-detection of alternatively reported neutral iron (including "iron rain"[13]), and only upper limits on oxides of titanium and vanadium.[11] By 2021, the controversy was resolved by demonstrating that the tentative iron condensation signal may also appear due to the temperature asymmetry between leading and trailing limbs, although existing data does not allow distinguishing between the two scenarios.[14]

Planetary atmospheric circulation models for WASP-76b suggests a dense cloud layers formed of aluminum oxide, neutral iron, or magnesium orthosilicate, but no significant nightside condensation of iron.[15]

See also[]

References[]

  1. ^ West, R. G.; Hellier, C.; Almenara, J.-M.; Anderson, D. R.; Barros, S. C. C.; Bouchy, F.; Brown, D. J. A.; Collier Cameron, A.; Deleuil, M.; Delrez, L.; Doyle, A. P.; Faedi, F.; Fumel, A.; Gillon, M.; Gómez Maqueo Chew, Y.; Hébrard, G.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S. (2016). "Three irradiated and bloated hot Jupiters". Astronomy & Astrophysics. 585: A126. arXiv:1310.5607. doi:10.1051/0004-6361/201527276. S2CID 54746373.
  2. ^ Planet WASP-76 b at exoplanet.eu
  3. ^ a b Zhou, G.; Bayliss, D. D. R.; Kedziora-Chudczer, L.; Tinney, C. G.; Bailey, J.; Salter, G.; Rodriguez, J. (2015). "Secondary eclipse observations for seven hot-Jupiters from the Anglo-Australian Telescope". Monthly Notices of the Royal Astronomical Society. 454 (3): 3002–3019. arXiv:1509.04147. Bibcode:2015MNRAS.454.3002Z. doi:10.1093/mnras/stv2138. S2CID 84835437.
  4. ^ "WASP-76 b". NASA. Retrieved 2020-05-03.
  5. ^ "ESO Telescope Observes Exoplanet Where It Rains Iron". European Southern Observatory. Retrieved 2020-05-06.
  6. ^ "On a Faraway Planet, it's Cloudy With a Chance of Liquid Iron Rain". NBC News. Retrieved 2020-05-03.
  7. ^ Fu, Guangwei; Deming, Drake; Lothringer, Joshua; Nikolov, Nikolay; Sing, David K.; Kempton, Eliza M. -R.; Ih, Jegug; Evans, Thomas M.; Stevenson, Kevin; Wakeford, H. R.; Rodriguez, Joseph E.; Eastman, Jason D.; Stassun, Keivan; Henry, Gregory W.; López-Morales, Mercedes; Lendl, Monika; Conti, Dennis M.; Stockdale, Chris; Collins, Karen; Kielkopf, John; Barstow, Joanna K.; Sanz-Forcada, Jorge; Ehrenreich, David; Bourrier, Vincent (2020). "The Hubble PanCET program: Transit and Eclipse Spectroscopy of the Strongly Irradiated Giant Exoplanet WASP-76b". arXiv:2005.02568 [astro-ph.EP].
  8. ^ Tabernero, H. M.; Zapatero Osorio, M. R.; Allart, R.; Borsa, F.; Casasayas-Barris, N.; Demangeon, O.; Ehrenreich, D.; Lillo-Box, J.; Lovis, C.; Pallé, E.; Sousa, S. G.; Rebolo, R.; Santos, N. C.; Pepe, F.; Cristiani, S.; Adibekyan, V.; Allende Prieto, C.; Alibert, Yann; Barros, S. C. C.; Bouchy, F.; Bourrier, V.; D'Odorico, V.; Dumusque, X.; Faria, J. P.; Figueira, P.; Génova Santos, R.; González Hernández, J. I.; Hojjatpanah, S.; Lo Curto, G.; et al. (2020), ESPRESSO high resolution transmission spectroscopy of WASP-76 b, arXiv:2011.12197
  9. ^ CARMENES detection of the Ca ii infrared triplet and possible evidence of He i in the atmosphere of WASP-76b, 2021, arXiv:2109.00059
  10. ^ Detection of Ionized Calcium in the Atmosphere of the Ultra-Hot Jupiter WASP-76b, 2021, arXiv:2109.04373
  11. ^ a b Edwards, Billy; Changeat, Quentin; Baeyens, Robin; Tsiaras, Angelos; Al-Refaie, Ahmed; Taylor, Jake; Kai Hou Yip; Michelle Fabienne Bieger; Blain, Doriann; Gressier, Amelie; Guilluy, Gloria; Adam Yassin Jaziri; Kiefer, Flavien; Modirrousta-Galian, Darius; Morvan, Mario; Mugnai, Lorenzo V.; Pluriel, William; Poveda, Mathilde; Skaf, Nour; Whiteford, Niall; Wright, Sam; Zingales, Tiziano; Charnay, Benjamin; Drossart, Pierre; Leconte, Jeremy; Venot, Olivia; Waldmann, Ingo; Beaulieu, Jean-Philippe (2020). "ARES I: WASP-76 b, A Tale of Two HST Spectra". The Astronomical Journal. 160 (1): 8. arXiv:2005.02374. Bibcode:2020AJ....160....8E. doi:10.3847/1538-3881/ab9225. S2CID 218502668.
  12. ^ Jonathan Amos. "WASP-76b: The Exotic Inferno Planet Where it 'Rains Iron'". BBC News. Retrieved 2020-05-03.
  13. ^ Lothringer, Joshua D.; Fu, Guangwei; Sing, David K.; Barman, Travis S. (2020). "UV Exoplanet Transmission Spectral Features as Probes of Metals and Rainout". The Astrophysical Journal. 898 (1): L14. arXiv:2005.02528. Bibcode:2020ApJ...898L..14L. doi:10.3847/2041-8213/aba265. S2CID 218516764.
  14. ^ Decomposing the Iron Cross-Correlation Signal of the Ultra-Hot Jupiter WASP-76b in Transmission using 3D Monte-Carlo Radiative Transfer, 2021, arXiv:2105.11034
  15. ^ No umbrella needed: Confronting the hypothesis of iron rain on WASP-76b with post-processed general circulation models, 2021, arXiv:2109.00163
Retrieved from ""