Waring's prime number conjecture
In number theory, Waring's prime number conjecture is a conjecture related to Vinogradov's theorem, named after the English mathematician Edward Waring. It states that every odd number exceeding 3 is either a prime number or the sum of three prime numbers. It follows from the generalized Riemann hypothesis,[1] and (trivially) from Goldbach's weak conjecture.
See also[]
References[]
- ^ Deshouillers, J.-M.; Effinger, G.; te Riele, H.; Zinoviev, D. (1997). "A complete Vinogradov 3-primes theorem under the Riemann Hypothesis". Electr. Res. Ann. of AMS. 3: 99–104.
External links[]
Categories:
- Additive number theory
- Conjectures about prime numbers
- Conjectures that have been proved
- Number theory stubs