Well-known text representation of geometry
Well-known text (WKT) is a text markup language for representing vector geometry objects. A binary equivalent, known as well-known binary (WKB), is used to transfer and store the same information in a more compact form convenient for computer processing but that is not human-readable. The formats were originally defined by the Open Geospatial Consortium (OGC) and described in their Simple Feature Access.[1] The current standard definition is in the ISO/IEC 13249-3:2016 standard.[2]
Geometric objects[]
WKT can represent the following distinct geometric objects:
- Point, MultiPoint
- LineString, MultiLineString
- Polygon, MultiPolygon, Triangle
- PolyhedralSurface
- TIN (Triangulated irregular network)
- GeometryCollection
Coordinates for geometries may be 2D (x, y), 3D (x, y, z), 4D (x, y, z, m) with an m value that is part of a linear referencing system or 2D with an m value (x, y, m). Three-dimensional geometries are designated by a "Z" after the geometry type and geometries with a linear referencing system have an "M" after the geometry type. Empty geometries that contain no coordinates can be specified by using the symbol EMPTY
after the type name.
WKT geometries are used throughout OGC specifications and are present in applications that implement these specifications. For example, PostGIS contains functions that can convert geometries to and from a WKT representation, making them human readable.
The OGC standard definition requires a polygon to be topologically closed. It also states that if the exterior linear ring of a polygon is defined in a counterclockwise direction, then it will be seen from the "top". Any interior linear rings should be defined in opposite fashion compared to the exterior ring, in this case, clockwise.[3]
Type | Examples | |
---|---|---|
Point | POINT (30 10)
| |
LineString | LINESTRING (30 10, 10 30, 40 40)
| |
Polygon | POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))
| |
POLYGON ((35 10, 45 45, 15 40, 10 20, 35 10),
|
Type | Examples | |
---|---|---|
MultiPoint | MULTIPOINT ((10 40), (40 30), (20 20), (30 10))
| |
MULTIPOINT (10 40, 40 30, 20 20, 30 10)
| ||
MultiLineString | MULTILINESTRING ((10 10, 20 20, 10 40),
| |
MultiPolygon | MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)),
| |
MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)),
| ||
GeometryCollection | GEOMETRYCOLLECTION (POINT (40 10),
|
The following are some other examples of geometric WKT strings: (Note: Each item below is an individual geometry.)
GEOMETRYCOLLECTION(POINT(4 6),LINESTRING(4 6,7 10))
POINT ZM (1 1 5 60)
POINT M (1 1 80)
POINT EMPTY
MULTIPOLYGON EMPTY
TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
TIN (((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)))
POLYHEDRALSURFACE Z ( PATCHES
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 0 1 0, 0 1 1, 0 0 1, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 1, 1 0 1, 0 0 1, 0 1 1, 1 1 1)),
((1 1 1, 1 0 1, 1 0 0, 1 1 0, 1 1 1)),
((1 1 1, 1 1 0, 0 1 0, 0 1 1, 1 1 1))
)
Well-known binary[]
Well-known binary (WKB) representations are typically shown in hexadecimal strings.
The first byte indicates the byte order for the data:
00
: big endian01
: little endian
The next 4 bytes are a 32-bit unsigned integer for the geometry type, as described below:
Type | 2D | Z | M | ZM |
---|---|---|---|---|
Geometry | 0000 |
1000 |
2000 |
3000
|
Point | 0001 |
1001 |
2001 |
3001
|
LineString | 0002 |
1002 |
2002 |
3002
|
Polygon | 0003 |
1003 |
2003 |
3003
|
MultiPoint | 0004 |
1004 |
2004 |
3004
|
MultiLineString | 0005 |
1005 |
2005 |
3005
|
MultiPolygon | 0006 |
1006 |
2006 |
3006
|
GeometryCollection | 0007 |
1007 |
2007 |
3007
|
CircularString | 0008 |
1008 |
2008 |
3008
|
CompoundCurve | 0009 |
1009 |
2009 |
3009
|
CurvePolygon | 0010 |
1010 |
2010 |
3010
|
MultiCurve | 0011 |
1011 |
2011 |
3011
|
MultiSurface | 0012 |
1012 |
2012 |
3012
|
Curve | 0013 |
1013 |
2013 |
3013
|
Surface | 0014 |
1014 |
2014 |
3014
|
PolyhedralSurface | 0015 |
1015 |
2015 |
3015
|
TIN | 0016 |
1016 |
2016 |
3016
|
Triangle | 0017 |
1017 |
2017 |
3017
|
Circle | 0018 |
1018 |
2018 |
3018
|
GeodesicString | 0019 |
1019 |
2019 |
3019
|
EllipticalCurve | 0020 |
1020 |
2020 |
3020
|
NurbsCurve | 0021 |
1021 |
2021 |
3021
|
Clothoid | 0022 |
1022 |
2022 |
3022
|
SpiralCurve | 0023 |
1023 |
2023 |
3023
|
CompoundSurface | 0024 |
1024 |
2024 |
3024
|
BrepSolid |
|
1025 |
|
|
AffinePlacement | 102 |
1102 |
|
|
Each data type has a unique data structure, such as the number of points or linear rings, followed by coordinates in 64-bit double numbers.
For example, the geometry POINT(2.0 4.0)
is represented as: 000000000140000000000000004010000000000000
, where:
- 1-byte integer
00
or 0: big endian - 4-byte integer
00000001
or 1: POINT (2D) - 8-byte float
4000000000000000
or 2.0: x-coordinate - 8-byte float
4010000000000000
or 4.0: y-coordinate
Format variations[]
- EWKT and EWKB – Extended Well-Known Text/Binary
- A PostGIS-specific format that includes the spatial reference system identifier (SRID) and up to 4 ordinate values (XYZM).[4][5] For example:
SRID=4326;POINT(-44.3 60.1)
to locate a longitude/latitude coordinate using the WGS 84 reference coordinate system. It also supports circular curves, following elements named (but not fully defined) within the original WKT: CircularString, CompoundCurve, CurvePolygon and CompoundSurface.[6] - AGF Text – Autodesk Geometry Format
- An extension to OGC's Standard (at the time), to include curved elements; most notably used in MapGuide.[7]
See also[]
- Simple Features
- Geography Markup Language
- Well-known text representation of coordinate reference systems
References[]
- ^ Herring, John R., ed. (2011-05-28), OpenGIS® Implementation Standard for Geographic information – Simple feature access – Part 1: Common architecture, Open Geospatial Consortium, retrieved 2019-01-28
- ^ Information technology – Database languages – SQL multimedia and application packages – Part 3: Spatial (5th ed.), ISO, 2016-01-15, retrieved 2019-01-28
- ^ See the OGC Implementation Specification for geographic information – Simple Feature Access, section 6.1.11.1. http://www.opengeospatial.org/standards/sfa
- ^ "Postgis/Postgis". GitHub. 6 October 2021.
- ^ "ST_GeomFromEWKT".
- ^ "Chapter 4: Using PostGIS: Data Management and Queries". postgis.net. Retrieved 2021-07-30.
{{cite web}}
: CS1 maint: url-status (link) - ^ http://e-logistic-plans.gdfsuez.com/mapguide/help/webapi/da/dc0/group___agf_text.htm
External links[]
- GIS file formats
- Markup languages