YTH protein domain

From Wikipedia, the free encyclopedia
YTH protein domain
Identifiers
SymbolYTH
PfamPF04146
Pfam clanCL0178
InterProIPR007275

In molecular biology, the protein domain, YTH refers to a member of the YTH family that has been shown to selectively remove transcripts of meiosis-specific genes expressed in mitotic cells.[1]

This protein domain, the YTH-domain, is conserved across all eukaryotes and suggests that the conserved C-terminal region plays a critical role in relaying the cytosolic Ca-signals to the nucleus, thereby regulating gene expression.[2]

Function/mechanism[]

It has been speculated that in higher eukaryotic YTH-family members may be involved in similar mechanisms to suppress gene regulation during gametogenesis or general silencing. The rat protein YT521-B, SWISSPROT, is a tyrosine-phosphorylated nuclear protein, that interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68kDa Src substrate associated during mitosis, Sam68. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner.[3] Additionally, it is also thought that YTH domain has a role in RNA binding. [4]

Structure[]

The domain is predicted to be a mixed alpha/beta-fold containing four alpha helices and six beta strands.[4]

Plant[]

In plant cells environmental stimuli, which light, pathogens, hormones, and abiotic stresses, elicit changes in the cytosolic calcium levels but little is known of the cytosolic-nuclear Ca-signaling pathway; where gene regulation occurs to respond appropriately to the stress. It has been demonstrated that two novel Arabidopsis thaliana (Mouse-ear cress) proteins, (ECT1 and ECT2), specifically associated with Calcineurin B-Like-Interacting Protein Kinase1 (CIPK1), a member of Ser/Thr protein kinases that interact with the calcineurin B-like Ca-binding proteins. These two proteins contain a very similar C-terminal region (180 amino acids in length, 81% similarity), which is required and sufficient for both interaction with CIPK1 and translocation to the nucleus.

References[]

  1. ^ Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M (July 2006). "Selective elimination of messenger RNA prevents an incidence of untimely meiosis". Nature. 442 (7098): 45–50. doi:10.1038/nature04881. PMID 16823445. S2CID 4383571.
  2. ^ Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (September 2005). "Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization". Plant Physiol. 139 (1): 138–50. doi:10.1104/pp.105.065649. PMC 1203364. PMID 16113215.
  3. ^ Hartmann AM, Nayler O, Schwaiger FW, Obermeier A, Stamm S (November 1999). "The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn)". Mol. Biol. Cell. 10 (11): 3909–26. doi:10.1091/mbc.10.11.3909. PMC 25688. PMID 10564280.
  4. ^ a b Stoilov P, Rafalska I, Stamm S (October 2002). "YTH: a new domain in nuclear proteins". Trends Biochem. Sci. 27 (10): 495–7. doi:10.1016/S0968-0004(02)02189-8. PMID 12368078.
This article incorporates text from the public domain Pfam and InterPro: IPR007275
Retrieved from ""