Yariv reagent

From Wikipedia, the free encyclopedia
Yariv reagent.svg
Yariv reagent. Three example R groups shown: β-D-Galactose (βGal), β-D-Glucose (βGlc), β-D-Mannose (βMan).
Identifiers
3D model (JSmol)
  • alpha-Galactosyl: InChI=1S/C42H48N6O21/c49-13-22-28(52)34(58)37(61)40(67-22)64-19-7-1-16(2-8-19)43-46-25-31(55)26(47-44-17-3-9-20(10-4-17)65-41-38(62)35(59)29(53)23(14-50)68-41)33(57)27(32(25)56)48-45-18-5-11-21(12-6-18)66-42-39(63)36(60)30(54)24(15-51)69-42/h1-12,22-24,28-30,34-44,49-54,56,58-63H,13-15H2/t22-,23-,24-,28+,29+,30+,34+,35+,36+,37-,38-,39-,40+,41+,42+/m1/s1
    Key: CDYGCPPQERMCPE-LKQUKSTNSA-N
  • beta-Glucosyl: InChI=1S/C42H48N6O21/c49-13-22-28(52)34(58)37(61)40(67-22)64-19-7-1-16(2-8-19)43-46-25-31(55)26(47-44-17-3-9-20(10-4-17)65-41-38(62)35(59)29(53)23(14-50)68-41)33(57)27(32(25)56)48-45-18-5-11-21(12-6-18)66-42-39(63)36(60)30(54)24(15-51)69-42/h1-12,22-24,28-30,34-44,49-54,56,58-63H,13-15H2/t22-,23-,24-,28-,29-,30-,34+,35+,36+,37-,38-,39-,40-,41-,42-/m1/s1
    Key: CDYGCPPQERMCPE-DTYGZFTESA-N
  • alpha-Galactosyl: C1=CC(=CC=C1NN=C2C(=C(C(=O)C(=NNC3=CC=C(C=C3)O[C@@H]4[C@@H]([C@H]([C@H]([C@H](O4)CO)O)O)O)C2=O)N=NC5=CC=C(C=C5)O[C@@H]6[C@@H]([C@H]([C@H]([C@H](O6)CO)O)O)O)O)O[C@@H]7[C@@H]([C@H]([C@H]([C@H](O7)CO)O)O)O
  • beta-Glucosyl: C1=CC(=CC=C1NN=C2C(=C(C(=O)C(=NNC3=CC=C(C=C3)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O)C2=O)N=NC5=CC=C(C=C5)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O)O)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)CO)O)O)O
Properties
C42H48N6O21
Molar mass 972.867 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Yariv reagent (1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene) is a glycosylated phenolic compound that binds strongly to galactans and arabinogalactan proteins.[1][2][3] It can therefore be used in their detection, quantification, precipitation, isolation, staining, and interfere with their function.[3][4] It was initially synthesised in 1962 as an antigen for carbohydrate-binding antibodies but has subsequently become more broadly used.[1][5] There are many variants of Yariv reagents which vary in the glycosyl groups on the outside of the structure, typically glucose, galactose, and mannose.[6]

References[]

  1. ^ a b B S Paulsen; David J Craik; Dave E. Dunstan; B A Stone; A Bacic (20 January 2014). "The Yariv reagent: behaviour in different solvents and interaction with a gum arabic arabinogalactan-protein". Carbohydrate Polymers. 106: 460–468. doi:10.1016/J.CARBPOL.2014.01.009. ISSN 0144-8617. PMID 24721102. Wikidata Q30798155.
  2. ^ Esther M Göllner; Wolfgang Blaschek; Birgit Classen (1 March 2010). "Structural investigations on arabinogalactan-protein from wheat, isolated with Yariv reagent". Journal of Agricultural and Food Chemistry. 58 (6): 3621–3626. doi:10.1021/JF903843F. ISSN 0021-8561. PMID 20163180. Wikidata Q33531883.
  3. ^ a b Kiminari Kitazawa; Theodora Tryfona; Yoshihisa Yoshimi; et al. (7 January 2013). "β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins". Plant Physiology. 161 (3): 1117–1126. doi:10.1104/PP.112.211722. ISSN 0032-0889. PMC 3585584. PMID 23296690. Wikidata Q38318749.
  4. ^ A Chapman; A S Blervacq; J Vasseur; J L Hilbert (1 August 2000). "Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of beta-glucosyl Yariv reagent and epitope localisation during embryo development". Planta. 211 (3): 305–314. doi:10.1007/S004250000299. ISSN 0032-0935. PMID 10987548. Wikidata Q74315380.
  5. ^ YARIV J; RAPPORT MM; GRAF L (1 November 1962). "The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides". Biochemical Journal. 85: 383–388. doi:10.1042/BJ0850383. ISSN 0264-6021. PMC 1243744. PMID 14002491. Wikidata Q42554063.
  6. ^ "Yariv reagents for detection and quantitation of arabinogalactan-proteins" (PDF). Biosupplies Australia. Archived (PDF) from the original on 2021-01-16. Retrieved 2021-01-16.
Retrieved from ""