Zero-mode waveguide

From Wikipedia, the free encyclopedia

A zero-mode waveguide is an optical waveguide that guides light energy into a volume that is small in all dimensions compared to the wavelength of the light.

Zero-mode waveguides have been developed for rapid parallel sensing of zeptolitre sample volumes, as applied to gene sequencing, by Pacific Biosciences (previously named Nanofluidics, Inc.)[1]

A waveguide operated at frequencies lower than its cutoff frequency (wavelengths longer than its cutoff wavelength) and used as a precision attenuator is also known as a "waveguide below-cutoff attenuator."[2]

The zero-mode waveguide is made possible by creating circular or rectangular nanoapertures using focused ion beam on an aluminium layer.[3]

See also[]

  • Single molecule real time sequencing

References[]

  1. ^ Jan Kieleczawa (2004). DNA sequencing: optimizing the process and analysis. Jones & Bartlett Publishers. p. 190. ISBN 978-0-7637-4782-4.
  2. ^ D. H. Russell (Dec 1997). "The waveguide below-cutoff attenuation standard". IEEE Trans. Microwave Theory and Technology. 45 (12): 2408–2413. Bibcode:1997ITMTT..45.2408R. doi:10.1109/22.643852. S2CID 6236996.
  3. ^ Baibakov, Mikhail; Barulin, Aleksandr; Roy, Prithu; Claude, Jean-Benoît; Patra, Satyajit; Wenger, Jérôme (1999-02-22). "Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet". Nanoscale Advances. 2 (9): 4153–4160. doi:10.1039/D0NA00366B. Retrieved 2021-11-30.


Retrieved from ""