105×617mm

From Wikipedia, the free encyclopedia
105×617R
Panzermuseum Munster 2010 0627.JPG
A 105 mm DM16 illuminating round alongside a 105 mm DM23 APFSDS round (cross-sectioned).
Typetank gun
Place of originUnited Kingdom
Service history
In service1959–present
Used byWestern Bloc and Third World.
Production history
DesignerRARDE Fort Halstead
Designedearly-mid 1950s
Specifications
Bullet diameter105 mm (4.1 in)
Shoulder diameter129 mm (5.1 in)
Base diameter137 mm (5.4 in)
Rim diameter147 mm (5.8 in)
Overall length617 mm (24.3 in)

The 105×617mm (4.1 inch) also known as 105 × 617 R is a common, NATO-standard, tank gun cartridge used in 105mm guns such as those derived from the Royal Ordnance L7.

The 105 × 617 R cartridge was originally developed from the 84 mm (3.3 in) calibre Ordnance QF 20-pounder 84 × 618R cartridge as part of the development of the L7 105 mm rifled gun.

105 mm ammunition[]

Armour-Piercing Discarding sabot (APDS)[]

Designation Origin Year Penetrator material Propellant type & weight Chamber pressure Muzzle velocity Velocity drop Sub-projectile weight without sabot / with sabot Perforation at normal and oblique incidences Notes
L22[1]  UK 1950s Tungsten carbide
L28A1  UK 1959 Tungsten carbide (core) and Tungsten alloy cap 5.598 kg of NQM044 3100 MPa 1478 m/s 4.1 kg / 5.84 kg 120 mm @ 60° at 914 m[2] Produced under licence by Germany as DM13, used in the Swedish Army as 60 mm Slpprj m/61 and in the Swiss Army as 10,5 Pz Kan 60/61 Pz Ke G Lsp.
L36A1  UK 1960 Tungsten carbide (core) and tungsten alloy cap 5.598 kg of NQM044 3100 MPa 1478 m/s 4.04 kg / 5.8 kg 120 mm @ 60° at 914 m[3] British dsignation of the M392 APDS manufactured in the UK for the US Army, it features a safer primer. Quickly replaced in US service by M392A1
M392A2  USA 1960s Tungsten carbide (core) and tungsten alloy cap 1478 m/s 120 mm @ 60° at 914 m[4] US-manufactured L36A1
Slpprj m/62  Sweden 1962 Tungsten carbide (core) 5.9 kg NK1096 3100 MPa 1450 m/s 4.5 kg / 6.32 kg 200 mm @ 30° at 1500 m, 140 mm @ 55° at 700 m[5] Swedish-developed APDS round with a 57 mm sub-caliber projectile
L52  UK 1965 or 1966
1968 (L52A2)
Tungsten alloy (core) and Tungsten alloy (tilt cap) 5.598 kg of NQM047 3100 MPa 1427 m/s 4.65 kg / 6.48 kg 120 mm @ 60° at 1830 m[6] The L52 introduced an anti-ricochet tilt cap. Produced under licence by US as M728 and used in the Swedish Army as 61 mm Slpprj m/66

Armour-Piercing Fin-Stabilized Discarding sabot (APFSDS)[]

Designation Origin Designer & producer Year Penetrator material / Mass Propellant type & weight Chamber pressure Muzzle velocity Velocity drop Sub-projectile weight without sabot / with sabot Perforation at normal and oblique incidences Notes
M735  USA Teledyne Firth Stirling 1976 Tungsten alloy X11 (core) / 2.16 kg with Maraging Steel Jacket 1501 m/s 3.72 kg / 5.79 kg NATO Heavy Single target at 2930 m (1307 m/s) First serial production APFSDS of the United States. Developed from the 152mm XM578E1 projectile, with increased core length and mass, as well as projectile body length. XM735E2 Standardized as M735 around 1976.
M735A1  USA Primex Technologies 1979 Depleted Uranium alloy (core) / 2.18 kg with Maraging Steel Jacket 1501 m/s A further modification of M735, using a Depleted Uranium Core instead of the Tungsten Alloy core. Never fielded by the U.S. military.
M774  USA Primex Technologies 1980[7] Depleted Uranium alloy / 3.4 kg 1509 m/s 3.61 kg / 5.78 kg Estimated to be 185 mm RHA at 60° at 2000 m (370 mm LoS) First production Monobloc penetrator used by US military Tank fleets.
M833  USA Primex Technologies 1983 Depleted Uranium alloy 1494 m/s / 6.10 kg 420 mm LoS at 60° at 2000 m[8] Second production monobloc round for the 105mm M68 Gun produced by the US, featured an increased length to diameter ratio.
M900A1  USA Primex Technologies 1989 Depleted Uranium alloy 1505 m/s / 6.86 kg Designed for the M68A1 and M68A1E4 guns.
FP105  USA 1980s tungsten alloy 6.1 kg of M30 or NQ-M044 1485 m/s with NQ/M propellant
1510 m/s with M30 propellant
3.6 kg / 5.8 kg penetration of the NATO Heavy Single target in excess of 4000 m and Heavy triple target at 65° obliquity in excess of 6000 m Similar design to the M774, also known as C-76 or C-76A1 in Canada
C127  USA Olin Ordnance Ammunition 1991[9] tungsten alloy 1560 m/s 3.44 kg /
CMC 105  USA Chamberlain Manufacturing Corporation early 1990s tungsten alloy 6.1 kg of M30 415 MPa 1501 m/s 3.56 kg / 5.8 kg NATO Heavy Single target at 4000 m and Heavy Triple at 5700 m or 178 mm at 67° obliquity at range about 2600 m[10] The latest private venture 105 mm APFSDS-T to be developed by the Chamberlain Manufacturing Corporation.
M111 Hetz-6  Israel IMI 1978 tungsten alloy 5.8 kg of M30 M 4200 MPa 1455 m/s 4.2 kg / 6.3 kg NATO Single heavy target at 2000 m or 150 mm at 60° obliquity at 2000 m[11] or NATO Single Heavy at 4200 m Produced under licence by Diehl in Germany and in Switzerland. Known as DM23 in the Bundeswehr, Pfeil Pat Lsp in the Swiss Army and 33 mm Slpprj m/80 in the Swedish Army
M413 Hetz-7  Israel IMI 1980s tungsten alloy 5.8 kg 1450 m/s or 1455 m/s / 6.3 kg NATO Single Heavy target at 6000 m Produced under licence by Diehl in Germany as DM33, also known as CL260
CL3108  Israel IMI c. 1987 tungsten alloy Exhibited relatively equal performance to the M833[12] Also known as FS Mk. 2 Improved or M429
M426  Israel IMI tungsten alloy 6 kg of M26 440 MPa (nominal) 1433 m/s / 6.6 kg 470 mm at 2000 m Produced under licence by Diehl in Germany as DM63, also used by the Swedish Army (Slpprj m/90C) and Canada (C127)
M428 SWORD  Israel IMI 2003 tungsten alloy 5.8kg kg of NC-NG 1505 m/s
OFL 105 F1  France GIAT 1981 18 density tungsten alloy 5.85 kg of B19T 1495 m/s[i] 3.8 kg / 5.8 kg 392 mm at point-blank range, 370 mm at 1000 m,[13][ii] NATO Single heavy target at 4400 m[iii] Fitted with small bearing balls inside its hollow ballistic cap for improved beyond-armour effects.
OFL 105 G2  France GIAT c. 1987 tungsten-nickel-iron alloy 5.85 kg of Wimmis 1490 m/s[iv] 138 m/s (at 2000 m) 4.2 kg / 6.2 kg 487 mm at point-blank range, NATO Single heavy target at 6200 m[v][14] The OFL 105 G2 uses a high energetic Swiss-made Wimmis double base propellant
OFL 105 G3  France GIAT c. 1987 tungsten-nickel-iron alloy 5.85 kg of B19T 1460 m/s[vi] 4.2 kg / 6.2 kg 469 mm at point-blank range, NATO Single heavy target at 5600 m[vii][15] cheaper variant (15%) of the OFL 105 G2 employing the standard SNPE poudre B propellant
OFL 105 F2  France Giat Industries 1995 depleted uranium 1525 m/s[viii] / 6.25 kg 520 mm[16] or 540 mm at 2000 m OFL 105 G2 variant with a DU penetrator
L64A4  UK Royal Ordnance Factories 1982 tungsten alloy 5.62 kg of LM1900 511 MPa (max) 1485 m/s 3.8 kg / 6.12 kg NATO Single heavy target at 4200 m
H6/62  UK Royal Ordnance Factories 1987[17] tungsten-nickel-iron alloy 5.62 kg of LM1900 511 MPa (max)
426 MPa (nominal)
1490 m/s 3.6 kg / 6.1 kg NATO Single heavy target at 6000 m
DM43  Germany Rheinmetall late 1980s or early 1990s tungsten alloy 420 MPa 1475 m/s[18] 4.3 kg / 6.1 kg or 6.3 kg
NP105A2  Austria Ennstaler Metallwerk early 1980s tungsten-nickel-iron T176FA alloy 1485 m/s 3.7 kg / 473 mm at 1000 m[19]
C-437  Spain Empresa Nacional Bazán and Santa Bárbara Sistemas 1984 tungsten alloy 5.85 kg of B19T 1485 m/s / 5.65 kg defeat the NATO Heavy Triple target set at an angle of 65° and the NATO Single Heavy target set at 60°, both at a range of 5000 m[20] On impact with the target a series of three DENAL wads or cylinders under the windshield and around the penetrator core is compressed. This prepares the penetration zone and prevents rebound from armour at high angles of incidence Part of the kinetic energy in the core raises the temperature of the impact zone to soften the material, producing a number of particles behind the armour. The penetration hole is between 60 and 70 mm in diameter.
C-512  Spain Santa Bárbara Sistemas tungsten alloy 5.7 kg of B19T 345 MPa 1480 m/s / 5.925 kg peforation of the NATO Heavy Triple target at 4550 m and 120 mm target at 70° at 3500 m[21] the C-512 is similar to the C-437 but use a slightly longer and heavier penetrator
M1050  Belgium MECAR late 1980s tungsten alloy 1510 m/s / 5.8 kg is equivalent in performance to the FP105 APFSDS
M1060  Belgium MECAR early 1990s tungsten alloy 1510 m/s / 5.8 kg has a comparable performance to the US M833 but without the problems associated with depleted uranium
M1060A2  Belgium MECAR 1990s tungsten alloy 1460 m/s[ix] / 6.2 kg 440 mm RHA at 0° at 2000 m"105mm TK APFSDS-T M1060A2". Nexter. 2016. or 560 mm RHA at 60° (LoS penetration) at 2000 m This model of KE is a major product improvement of the MECAR M1060A1 APFSDS-T.
M1060A3  Belgium MECAR 2004 tungsten alloy 6.2 kg of JA2 1560 m/s[x][xi] / 6.2 kg 500 mm RHA at 2000 m[xii][22] (LoS penetration at 60° obliquity)
XC127 Excalibur  USA  France  UK Primex Technologies, Giat Industries and RO Defence. 1990s tungsten alloy X27X Exhibits similar penetration performance to the first generation of 120 mm APFSDS rounds.[23]
Type 93  Japan Daikin 1993 tungsten alloy 1501 m/s 3.4 kg / 5.8 kg 414 mm at 2000 m
M9718  South Africa Denel tungsten alloy 450 mm at 3000 m[24]
K270  South Korea Poongsan Metal Corporation tungsten alloy 1508 m/s
K274  South Korea Poongsan Metal Corporation 1998 tungsten alloy 1495 m/s / 6.23 kg 225 mm at 60° obliquity at 2000 m
K274N  South Korea Poongsan Metal Corporation tungsten alloy 15% increased penetration from K274
APFS DS 105mm  Pakistan National Development Complex (NDC) 2001 depleted uranium 1450 m/s >450 mm at 0° obliquity at unknown range[25]
P1A1  Pakistan Pakistan Ordnance Factories (POF) tungsten alloy 1490 m/s / 6.12 kg 300 mm at 0° obliquity at unknown range[26]
DTW2  China NORINCO 2000s tungsten alloy 5.9 kg of SD16 + SD16A 511 MPa (max) 1530 m/s 3.775 kg / 6 kg 150 mm at 71° obliquity at 2000 m
BTA2  China NORINCO 2012 tungsten alloy 1540 m/s / 5.9 kg 220 mm at 66.42° obliquity at 2000 m
Anti tank 105 mm APFSDS – T  Iran Defense Industries Organization (DIO) 2010s tungsten alloy / 5.3 kg 460 mm at unknown range[27]

High explosive anti-tank (HEAT)[]

Designation Origin Designer & producer Year Type Weight, complete round (kg) Projectile weight (kg) Explosive filling (kg) Muzzle velocity (m/s) Perforation at normal and oblique incidences Notes
OCC 105 F1  France early 1960s non-rotating 22.2 kg 10.95 kg 0.78 kg of HBX 1000 m/s 400 mm or 152 mm @ 64° at any range[28]
M456 HEAT-T[xiii]  USA 1966 (M456A1) fin-stabilized 21.8 kg 10.2 kg 0.97 kg of Composition B 1173 m/s 375 mm or 175 mm @ 60° at any range Produced under license by Japan as Type 91 HEAT-MP and Germany as DM12.
M152/6  Israel 2000s fin-stabilized M152/3 (licence-built M456) upgraded with an airburst fuze
 Spain,  Germany DEFTEC 1992 fin-stabilized 22 kg 10 kg 1.4 kg or 1.5 kg 1174 m/s Visually similar to the US M456 round but includes a detonation wave shaper for increased armour penetration. Also has a greater fragmentation effect.
L51 HEAT-T  Italy Simmel Difesa fin-stabilized 22.1 kg 10.25 kg 0.97 kg of Composition B 1173 m/s superior than the standard M456A1 model
CH-105-MZ HEAT-T  Spain Santa Bárbara Sistemas fin-stabilized 22 kg 10.3 kg 1.25 kg of HWC 94.5/4.5/1 1173 m/s 443 mm of RHA at any range
DTP1A  China NORINCO 2012 fin-stabilized 22 kg 1154 m/s visually similar to the US M456 projectile but incorporates an anti-ERA feature

High-explosive squash head (HESH)[]

High-Explosive Squash Head (HESH) / High explosive plastic (HEP)[xiv]
Designation Origin Year Weight, complete round Projectile weight Explosive filling Muzzle velocity Notes
L35A2 HESH  UK 1962 (L35A2) 20.02 kg 11.35 kg 1.97 kg of Hexogen used by the Swedish army as Spgr m/61
M393A1 HEP-T  USA 1960s 21.2 kg 11.3 kg 2.99 kg of Composition A3 732 m/s Produced under license by Japan as Type75 HEP-T and Germany as DM502
M156 HESH-T (HEP-T)  Israel 21.2 kg 11.3 kg 2.2 kg of Composition A3 731 m/s IDF and is equivalent to the L35 HESH-T and M393A1/A2 HEP-T

High Explosive (HE)[]

Designation Origin Year Weight, complete round Projectile mass Explosive filling Muzzle velocity Notes
OE Modèle 60  France 1960 21 kg
(46 lb)
12.1 kg 2 kg of RDX/TNT 770 m/s
Slsgr m/61 A  Sweden 24.37 kg 14.4 kg 1.83 kg of Trotyl 650 m/s
10,5 Pz Kan 60/61 St G Mz 54 Lsp Switzerland
M110 HE-MP-T  Israel 23.5 kg 13.6 kg ≈1 kg of CLX66 800 m/s Capable of penetrating double reinforced concrete walls >200mm, its electronic fuze has three modes
M9210 HE  South Africa 24.5 kg TNT/HNS 700 m/s 17m lethal radius, maximum range 10–12 km[29]

Smoke shells[]

Designation Origin Year Weight, complete round Projectile mass Muzzle velocity Filling Notes
L39A SMK  UK 1961 or 1962 26.47 kg 19.6 kg 330 m/s 3.3 kg of hexachloroethane and zinc oxide Used by the Swedish army as Rökgr m/61
M416 WP-T  USA 1960s 20.7 kg
(45 lb 10 oz)
11.4 kg
(25 lb 2 oz)
732 m/s
OFUM PH 105 F1  France 1960s 18.5 kg
(40 lb 13 oz)
12.1 kg
(26 lb 11 oz)
695 m/s 1.77 kg white phosphorus + 0.12 kg hexolite burster charge 75 m-wide smoke screen for 40 seconds

Anti-personnel[]

Designation Origin Year Type Weight, complete round Projectile mass Muzzle velocity Filling Notes
L15A1 CAN  UK canister
M1204  Belgium canister 19.5 kg
(43 lb 0 oz)
8.3 kg 1,173 m/s
(3,850 ft/s)
1130 steel spheres of a diameter of 11 mm 200 m
(660 ft) effective range
M494 APERS-T  USA 1967 beehive 24.94 kg
(55 lb 0 oz)
14 kg
(30 lb 14 oz)
821 m/s 5000 steel flechettes
TC800  Australia early 1990s canister cone-shaped dispersion within a 10° angle out to a maximum range of 300 m[30]
APAM-MP-T M117/1  Israel 2000s cluster 6 submunitions  [he]
M436 STUN  Israel 2000s less-than-lethal 14.4 kg
(31 lb 12 oz)
2.5 kg
(5 lb 8 oz)
plastic flakes Flash, bang and blast effects. "less-than-lethal" cartridge

Illuminating[]

Designation Origin Year Weight, complete round Projectile mass Muzzle velocity Filling Effect Notes
OECL 105 F1  France late 1960s 20.5 kg 11.5 kg or 11.7 kg 0.46 kg of illuminant 275 m/s will illuminate 300 m diameter area with more than 5 lux and a 900 m diameter area with more than 1 lux for 35 s.
DM16  Germany 22.7 kg 16 kg 280 m/s

Gun launched anti-tank guided missile (GLATGM)[]

Ammunition Origin Designer & producer Year Weight, complete round Missile mass Muzzle velocity Cruise speed Range Warhead Perforation at normal and oblique incidences Guidance system Notes
FALARICK 105  Ukraine &  Belgium CMI Defence and Luch Design Bureau 2010s 24 kg subsonic 5000 m tandem HEAT >550 mm semi-automatic laser beam-riding
LAHAT  Israel Israel Aerospace Industries (IAI) 1990s 16 kg 13 kg 300 m/s 280 m/s 6000 m (direct fire) 2.5 kg tandem HEAT semi-active laser guided

105 mm guns using 105x617mm ammunition[]

  • Gun, 105 mm, Tank, L7-series (United Kingdom)
  • M68-series (USA)
  • EX 35 (USA)
  • CN 105 F1 (France)
  • CN 105 G2 (France)
  • Rh 105-series (Germany)
  • OTO 105 Low Recoil Force Gun (Italy)
  • 10,5 cm Pz Kan 61 (Switzerland)
  • 105HP (Belgium)
  • GT 3 (South Africa)
  • GT 7 (South Africa)
  • GT 8 (South Africa)
  • FRT L51 (Argentina)
  • Type 94 (China)

Notes[]

  1. ^ 1525 m when fired from the longer French F1 105 mm L/56 gun
  2. ^ Barrel length not specified.
  3. ^ 4900 m when fired from the longer French F1 105 mm L/56 gun
  4. ^ 1525 m when fired from the longer French F1 105 mm L/56 gun
  5. ^ 6800 m when fired from the longer French F1 105 mm L/56 gun
  6. ^ 1490 m when fired from the longer French F1 105 mm L/56 gun
  7. ^ 6200 m when fired from the longer French F1 105 mm L/56 gun
  8. ^ when fired from the longer French F1 105 mm L/56 gun
  9. ^ 1490 m when fired from the longer French F1 105 mm L/56 gun
  10. ^ 1590 m when fired from the longer French F1 105 mm L/56 gun
  11. ^ 1620 m when fired from the longer Belgian CV 105HP 105 mm L/58 gun
  12. ^ 560 mm RHA at 2000 m when fired from the longer Belgian CV 105HP 105 mm L/58 gun
  13. ^ T refers to the round containing a tracer element.
  14. ^ "High Explosive Plastic" is the US term for HESH.

References[]

  1. ^ Ogorkiewicz, Richard M (1991). Technology of Tanks. United Kingdom: Jane's Information Group Limited. p. 424. ISBN 0-7106-0595-1.
  2. ^ Ogorkiewicz, Richard M. (1991). Technology of Tanks (Vols 1-2). London: Janes Information Group. p. 79. ISBN 978-0710605955.
  3. ^ Ogorkiewicz, Richard M. (1991). Technology of Tanks (Vols 1-2). London: Janes Information Group. p. 79. ISBN 978-0710605955.
  4. ^ Ogorkiewicz, Richard M. (1991). Technology of Tanks (Vols 1-2). London: Janes Information Group. p. 79. ISBN 978-0710605955.
  5. ^ "Armor penetration of Swedish tank and anti-tank weapons". tanks.mod16.org. Retrieved 15 February 2021.
  6. ^ Ogorkiewicz, Richard M. (1991). Technology of Tanks (Vols 1-2). London: Janes Information Group. p. 79. ISBN 978-0710605955.
  7. ^ TM 43-0001-28. Technical Manual Army Ammunition Data Sheets for Artillery Ammunition. Washington, DC: Headquarters Department of the Army. 1994. pp. 2–103.
  8. ^ Infantry Magazine (1990). "Infantry Magazine, Mar-Apr 1990, Page 39" (PDF). www.benning.army.mil.
  9. ^ Foss, Christopher (1993). Jane's Armoured Fighting Vehicle Retrofit Systems 1993-94. London: Jane's Information Group. p. 147. ISBN 978-0710610799.
  10. ^ Foss, Christopher (1993). Jane's Armoured Fighting Vehicle Retrofit Systems 1993-94. London: Jane's Information Group. p. 150. ISBN 978-0710610799.
  11. ^ Foss, Christopher (1993). Jane's Armoured Fighting Vehicle Retrofit Systems 1993-94. London: ane's Information Group. p. 104. ISBN 978-0710610799.
  12. ^ Department of Defense Appropriations for 1990. Washington: U.S. Government Printing Office. 1989. p. 243.
  13. ^ Ogorkiewicz, Richard M. (1991). Technology of Tanks (Vols 1-2). London: Janes Information Group. p. 82. ISBN 978-0710605955.
  14. ^ International Defense Review 9/1987. Jane's Publishing Group. 1987. p. 1245.
  15. ^ International Defense Review 9/1987. Jane's Publishing Group. 1987. p. 1245.
  16. ^ "IHSJane'sWeaponsAmmunition" (PDF). ihs.com. Retrieved 21 May 2020.
  17. ^ "Eye to Increasing Export Share". docplayer.net. Forecast International. Retrieved 4 November 2021.
  18. ^ Foss, Christopher (1993). Jane's Armoured Fighting Vehicle Retrofit Systems 1993-94. London: ane's Information Group. p. 98. ISBN 978-0710610799.
  19. ^ Ogorkiewicz, Richard M. (1991). Technology of Tanks (Vols 1-2). London: Janes Information Group. p. 82. ISBN 978-0710605955.
  20. ^ Foss, Christopher (1993). Jane's Armoured Fighting Vehicle Retrofit Systems 1993-94. London: ane's Information Group. p. 123. ISBN 978-0710610799.
  21. ^ IHS Jane's Weapons: Ammunition 2012-2013. Janes Information Group. February 2012. ISBN 978-0710630223.
  22. ^ "105 mm Tank Ammunition". Mecar. 2019.
  23. ^ "105mm Excalibur Introduced". docplayer.net. Forecast International. Retrieved 4 November 2021.
  24. ^ "R96.8m for Olifant, Rooikat ammo". defenceWeb. 18 August 2011. Retrieved 24 December 2020.
  25. ^ "Pakistan joins DU producer nations". janes.com. Jane's International Defence Review. Archived from the original on 2001-12-21. Retrieved 26 November 2021.
  26. ^ "Tank & Anti-Tank Ammunition". dokumen.tips. Pakistan Ordnance Factories. Retrieved 14 February 2021.
  27. ^ "SECTION 2 AMMUNITION & METALLURGY I N D U S T R I E S G R O U P". pdfslide.net. DIO DEFENSE INDUSTRIES ORGANIZATION. Retrieved 14 February 2021.
  28. ^ International Defense Review 1/1972. Interavia SA. 1987. p. 162.
  29. ^ "R96.8m for Olifant, Rooikat ammo". defenceWeb. 18 August 2011. Retrieved 24 December 2020.
  30. ^ Foss, Christopher (1993). Jane's Armoured Fighting Vehicle Retrofit Systems 1993-94. London: Jane's Information Group. pp. 69–70. ISBN 978-0710610799.
Retrieved from ""