8000 (number)

From Wikipedia, the free encyclopedia
← 7999 8000 8001 →
List of numbersIntegers
0 1k 2k 3k 4k 5k 6k 7k 8k 9k
Cardinaleight thousand
Ordinal8000th
(eight thousandth)
Factorization26 × 53
Greek numeral,Η´
Roman numeralVMMM, or VIII
Unicode symbol(s)VMMM, vmmm, VIII, viii
Binary11111010000002
Ternary1012220223
Octal175008
Duodecimal476812
Hexadecimal1F4016

8000 (eight thousand) is the natural number following 7999 and preceding 8001.

8000 is the cube of 20, as well as the sum of four consecutive integers cubed, 113 + 123 + 133 + 143.

The fourteen tallest mountains on Earth, which exceed 8000 meters in height, are sometimes referred to as eight-thousanders.[1]

Selected numbers in the range 8001–8999[]

8001 to 8099[]

8100 to 8199[]

8200 to 8299[]

8300 to 8399[]

8400 to 8499[]

8500 to 8599[]

  • 8513 – Sophie Germain prime, super-prime
  • 8515 – triangular number
  • 8521sexy prime with 8527
  • 8527super-prime, sexy prime with 8521
  • 8543 – safe prime
  • 8555square pyramidal number[10]
  • 8576 – centered heptagonal number
  • 8581 – super-prime

8600 to 8699[]

  • 8625 – nonagonal number
  • 8646 – triangular number
  • 8649 = 932, centered octagonal number
  • 8658 - sum of the first four perfect numbers (6, 28, 496, 8128) and the product of the culturally significant 666 and 13
  • 8663 – Sophie Germain prime
  • 8693 – Sophie Germain prime
  • 8695 – decagonal number
  • 8699 – safe prime

8700 to 8799[]

  • 8712 – smallest number that is divisible by its reverse: 8712 = 4 × 2178 (excluding palindromes and numbers with trailing zeros)
  • 8713 – balanced prime
  • 8719super-prime
  • 8741 – Sophie Germain prime
  • 8747 – safe prime, balanced prime, super-prime
  • 87483-smooth number (22×37)
  • 8751perfect totient number[11]
  • 8760 - the number of hours in a non-leap year; 365 × 24
  • 8761 – super-prime
  • 8778 – triangular number
  • 8783 – safe prime
  • 8784 - the number of hours in a leap year; 366 × 24

8800 to 8899[]

  • 8801magic constant of n × n normal magic square and n-Queens Problem for n = 26.
  • 8807super-prime, sum of eleven consecutive primes (761 + 769 + 773 + 787 + 797 + 809 + 811 + 821 + 823 + 827 + 829)
  • 8819 – safe prime
  • 8833 = 882 + 332
  • 8836 = 942
  • 8839 – sum of twenty-three consecutive primes (313 + 317 + 331 + 337 + 347 + 349 + 353 + 359 + 367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419 + 421 + 431 + 433 + 439 + 443 + 449)
  • 8849super-prime
  • 8855 – member of a Ruth-Aaron pair (first definition) with 8856
  • 8856 – member of a Ruth-Aaron pair (first definition) with 8855
  • 8888 - repdigit

8900 to 8999[]

  • 8911Carmichael number,[12] triangular number
  • 8923super-prime
  • 8926 – centered heptagonal number
  • 8944 – sum of the cubes of the first seven primes
  • 8951 – Sophie Germain prime
  • 8963 – safe prime
  • 8964 – number referring to the 1989 Tiananmen Square Protests
  • 8969 – Sophie Germain prime
  • 8976enneagonal number
  • 8999 – super-prime

Prime numbers[]

There are 110 prime numbers between 8000 and 9000:[13][14]

8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999

References[]

  1. ^ Voiland, Adam (16 December 2013). "The Eight-Thousanders". The Earth Observatory. NASA. Retrieved 12 September 2016.
  2. ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  3. ^ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  4. ^ "Sloane's A005188 : Armstrong (or Plus Perfect, or narcissistic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  5. ^ "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  6. ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  7. ^ "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  8. ^ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  9. ^ "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  10. ^ "Sloane's A000330 : Square pyramidal numbers". The On-LIne Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  11. ^ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  12. ^ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.
Retrieved from ""