Algar–Flynn–Oyamada reaction

From Wikipedia, the free encyclopedia

The Algar–Flynn–Oyamada reaction is a chemical reaction whereby a chalcone undergoes an oxidative cyclization to form a flavonol.[1][2]

The Algar–Flynn–Oyamada reaction

Reaction mechanism[]

There are several possible mechanisms to explain this reaction; however, these reaction mechanisms have not been elucidated. What is known is that a two-stage mechanism exists. First, dihydroflavonol is formed, which then subsequently oxidizes to form a flavonol.

Those mechanisms which have an epoxide to be an intermediate are excluded, which should be obtained by the oxidation of the double bond with hydrogen peroxide in Prileschajew reaction.[3] Gormley et al. have shown that the reaction does not proceed through an epoxide.[3]

The probable mechanisms are thus two possibilities:

  • The attack of nucleophiles by base phenolates educated at the double bond under direct attack on the hydrogen peroxide.
  • Nucleophiles attack phenolates under the formation of an enolate, which then attacks on hydrogen peroxide.
Possible mechanisms

See also[]

References[]

  1. ^ Algar, J.; Flynn, J. P. (1934). Proceedings of the Royal Irish Academy. 42B: 1.{{cite journal}}: CS1 maint: untitled periodical (link)
  2. ^ Oyamada, B. (1935). "A New General Method for the Synthesis of the Derivatives of Flavonol". Bulletin of the Chemical Society of Japan. 10 (5): 182–186. doi:10.1246/bcsj.10.182.
  3. ^ a b Gormley, T.R.; O'Sullivan, W.I. (1973). "Flavanoid epoxides—XIII". Tetrahedron. 29 (2): 369–373. doi:10.1016/S0040-4020(01)93304-6. hdl:10197/6996. ISSN 0040-4020.
Retrieved from ""