Betavoltaic device

From Wikipedia, the free encyclopedia

A betavoltaic device (betavoltaic cell or betavoltaic battery) is a type of nuclear battery which generates electric current from beta particles (electrons) emitted from a radioactive source, using semiconductor junctions. A common source used is the hydrogen isotope tritium. Unlike most nuclear power sources which use nuclear radiation to generate heat which then is used to generate electricity, betavoltaic devices use a non-thermal conversion process, converting the electron-hole pairs produced by the ionization trail of beta particles traversing a semiconductor.[1]

Betavoltaic power sources (and the related technology of alphavoltaic power sources[2]) are particularly well-suited to low-power electrical applications where long life of the energy source is needed, such as implantable medical devices or military and space applications.[1]

History[]

Betavoltaics were invented in the 1970s.[3] Some pacemakers in the 1970s used betavoltaics based on promethium,[4] but were phased out as cheaper lithium batteries were developed.[1]

Early semiconducting materials weren't efficient at converting electrons from beta decay into usable current, so higher energy, more expensive—and potentially hazardous—isotopes were used. The more efficient semiconducting materials used today[5] can be paired with relatively benign isotopes such as tritium, which produce less radiation.[1]

The Betacel was considered the first successfully commercialized betavoltaic battery.

Proposals[]

The primary use for betavoltaics is for remote and long-term use, such as spacecraft requiring electrical power for a decade or two. Recent progress has prompted some to suggest using betavoltaics to trickle-charge conventional batteries in consumer devices, such as cell phones and laptop computers.[6] As early as 1973, betavoltaics were suggested for use in long-term medical devices such as pacemakers.[4]

In 2016 it was proposed that carbon-14 in a diamond crystal structure could be used as a longer lived betavoltaic device (a diamond battery). The carbon-14 could be sourced from graphite blocks from decommissioned graphite-moderated reactors.[7][8][9] The blocks are otherwise handled as nuclear waste with a half life of 5,700 years. By extracting carbon-14 from the graphite blocks and turning it into a diamond crystal structure, the radioactive carbon isotope can be used as a power source while allowing the remaining non-radioactive graphite to be re-used for other applications such as pencils or electric motor brushes. Although the specific activity of carbon-14 is low and therefore the power density of a nuclear diamond battery is small, they can be used for low power sensor networks and structural health monitoring.[10]

In 2018 a Russian design based on 2-micron thick nickel-63 slabs sandwiched between 10 micron diamond layers was introduced. It produced a power output of about 1 μW at a power density of 10 μW/cm3. Its energy density was 3.3 kWh/kg. The half-life of nickel-63 is 100 years.[11][12][13]

Recent work has indicated the viability of betavoltaic devices in high-temperature environments in excess of 733 K (460 °C; 860 °F) like the surface of Venus.[14]

Drawbacks[]

As radioactive material emits, it slowly decreases in activity (refer to half-life). Thus, over time a betavoltaic device will provide less power. For practical devices, this decrease occurs over a period of many years. For tritium devices, the half-life is 12.32 years. In device design, one must account for what battery characteristics are required at end-of-life, and ensure that the beginning-of-life properties take into account the desired usable lifetime.

Liability connected with environmental laws and human exposure to tritium and its beta decay must also be taken into consideration in risk assessment and product development. Naturally, this increases both time-to-market and the already high cost associated with tritium. A 2007 report by the UK government's Health Protection Agency Advisory Group on Ionizing Radiation declared the health risks of tritium exposure to be double those previously set by the International Commission on Radiological Protection located in Sweden.[15]

Availability[]

Betavoltaic nuclear batteries can be purchased commercially. Available devices include a 100 μW tritium-powered device weighing 20 grams.[16][17]

Safety[]

Although betavoltaics use a radioactive material as a power source, the beta particles used are low energy and easily stopped by a few millimetres of shielding. With proper device construction (that is, proper shielding and containment), a betavoltaic device would not emit dangerous radiation. Leakage of the enclosed material would engender health risks, just as leakage of the materials in other types of batteries (such as lithium, cadmium and lead) leads to significant health and environmental concerns.[18]

See also[]

References[]

  1. ^ Jump up to: a b c d A 25-Year Battery: Long-lived nuclear batteries powered by hydrogen isotopes are in testing for military applications, Katherine Bourzac, Technology Review, MIT, 17 Nov 2009.
  2. ^ NASA Glenn Research Center, Alpha- and Beta-voltaics Archived 2011-10-18 at the Wayback Machine (accessed Oct. 4, 2011)
  3. ^ "Review and Preview of Nuclear Battery Technology". large.stanford.edu. Retrieved 2018-09-30.
  4. ^ Jump up to: a b Olsen, L.C. (December 1973). "Betavoltaic energy conversion". Energy Conversion. Elsevier Ltd. 13 (4): 117–124, IN1, 125–127. doi:10.1016/0013-7480(73)90010-7.
  5. ^ Maximenko, Sergey I.; Moore, Jim E.; Affouda, Chaffra A.; Jenkins, Phillip P. (December 2019). "Optimal Semiconductors for 3H and 63Ni Betavoltaics". Scientific Reports. 9 (1): 10892. Bibcode:2019NatSR...910892M. doi:10.1038/s41598-019-47371-6. ISSN 2045-2322. PMC 6659775. PMID 31350532.
  6. ^ "betavoltaic.co.uk". Retrieved 21 February 2016.
  7. ^ "'Diamond-age' of power generation as nuclear batteries developed". Cabot Institute for the Environment, University of Bristol.
  8. ^ University of Bristol (November 27, 2016). "'Diamond-age' of power generation as nuclear batteries developed". phys.org. Retrieved 2020-09-01.
  9. ^ Duckett, Adam (29 November 2016). "Diamond battery made from nuclear waste". The Chemical Engineer. Archived from the original on 2016-12-02. Retrieved 2016-12-02.
  10. ^ Overhaus, Daniel (31 August 2020). "Are Radioactive Diamond Batteries a Cure for Nuclear Waste?". Retrieved 31 August 2020 – via Wired.com.
  11. ^ Bormashov, V. S.; Troschiev, S. Yu.; Tarelkin, S. A.; Volkov, A. P.; Teteruk, D. V.; Golovanov, A. V.; Kuznetsov, M. S.; Kornilov, N. V.; Terentiev, S. A.; Blank, V. D. (2018-04-01). "High power density nuclear battery prototype based on diamond Schottky diodes". Diamond and Related Materials. 84: 41–47. doi:10.1016/j.diamond.2018.03.006. ISSN 0925-9635.
  12. ^ "Prototype nuclear battery packs 10 times more power". Moscow Institute of Physics and Technology. Retrieved 2020-09-01.
  13. ^ Irving, Michael (June 3, 2018). "Russian scientists pack more power into nuclear battery prototype". newatlas.com. Retrieved 2018-06-14.
  14. ^ O'Connor, A; Manuel, MV; Shaw, H (November 2019). "An extended-temperature, volumetric source model for betavoltaic power generation". Transactions of the American Nuclear Society. 121: 542–545. doi:10.13182/T30591. PMC 8269951. PMID 34248155. Retrieved 3 September 2021.
  15. ^ Edwards, Rob (29 November 2007). "Tritium hazard rating 'should be doubled'". NewScientist.
  16. ^ "NanoTritiumTM Betavoltaic P200 Series Specifications". 2018. Retrieved 2020-09-01.
  17. ^ "Commercially-available NanoTritium battery can power microelectronics for 20+ years". New Atlas. 2012-08-16. Retrieved 2020-09-01.
  18. ^ Maher, George (October 1991). "Battery Basics". County Commissions, North Dakota State University and U.S. Department of Agriculture. North Dakota State University. Retrieved August 29, 2011.

External links[]

Retrieved from ""