Christopher deCharms

From Wikipedia, the free encyclopedia
Leweb 2014 - conference - leweb trends - the future of the mind - christopher decharms.jpg

Christopher deCharms is a neuroscientist, author, inventor and founder and CEO of Brainful, and previously ofOmneuron, life sciences companies focusing on new technologies for meditation, cognitive enhancement, and changing brain function based on pioneering imaging methods that allow people to watch the activation of their own brains 'live' using functional magnetic resonance imaging (fMRI).

Meditation[]

deCharms wrote the book ,[1] with Tenzin Gyatso, the 14th Dalai Lama, which included conversations with a number of meditators and lamas, exploring how the approaches of these two traditions can be unified, and whether it is possible to use neuroscience to create new approaches to meditation.

Neuroscience[]

DeCharms invented and patented the use of brain imaging for someone to visualize the functioning of their own brain in real time using fMRI, creating the new academic field of real-time neuroimaging-based training along with collaborators from around the world. He has developed a set of technologies allowing patients, physicians, researchers, and subjects to visualize and control the functioning of the brain using non-invasive methods based on real-time functional magnetic resonance imaging (rtfMRI), see deCharms' TED talk, and is exploring applications of functional brain imaging. DeCharms started his research career in neurophysiology as a graduate student and later postdoctoral researcher in the laboratory of Michael Merzenich at the UCSF Keck Center for Integrative Neuroscience. This work included recording patterns of brain activation from multiple locations in the brain, and how these patterns of activation underlie perception, experience and learning.

rtfMRI training[]

DeCharms and a team of collaborative researchers have explored whether people can learn to control patterns of activation taking place inside their own brains. It had not previously been possible to non-invasively measure brain activation in real time using neuroimaging, but recent advances in computation and neuroimaging have made this a reality using rtfMRI. Subjects' brain activation patterns are measured using real time fMRI as the subjects watch from inside the scanner using virtual reality goggles, and subjects are trained to control the patterns of activation inside their own brain. This in turn leads to changes in the subjects' mental experiences. For example, subjects have learned to control activation in brain regions associated with pain, and they report a corresponding decrease in their levels of pain. DeCharms' team coined the term Neuroimaging Therapy, in use to describe this approach. Research on rtfMRI-based training has been published in the scientific literature and has also been broadly covered in the popular press including The New York Times,[2] BBC, NPR, Wired, Technology Review.[3] This research has been conducted at Stanford University and more recently at Omneuron's 3T MRI Research Center in Menlo Park, California through funding from the National Institutes of Health.

Selected publications[]

  • deCharms, R. C.; Maeda, F.; Glover, G. H.; Ludlow, D.; Pauly, J. M.; Soneji, D.; Gabrieli, J. D. & Mackey, S. C. (2005). "Control over brain activation and pain learned by using real-time functional MRI". Proceedings of the National Academy of Sciences USA. 102 (51): 18626–18631. Bibcode:2005PNAS..10218626D. doi:10.1073/pnas.0505210102. PMC 1311906. PMID 16352728.
  • deCharms, R. C.; Christoff, K.; Glover, G. H.; Pauly, J. M.; Whitfield, S. & Gabrieli, J. D. (2004). "Learned regulation of spatially localized brain activation using real-time fMRI". NeuroImage. 21 (1): 436–443. doi:10.1016/j.neuroimage.2003.08.041. PMID 14741680. S2CID 15947809.
  • Miller, K. L.; Hargreaves, B. A.; Lee, J.; Ress, D.; deCharms, R. C. & Pauly, J. M. (2003). "Functional brain imaging using a blood oxygenation sensitive steady state". Magnetic Resonance in Medicine. 50 (4): 675–683. doi:10.1002/mrm.10602. PMID 14523951. S2CID 14149208.
  • deCharms, R. C. & Zador, A. (2000). "Neural representation and the cortical code". Annual Review of Neuroscience. 23: 613–647. doi:10.1146/annurev.neuro.23.1.613. PMID 10845077.
  • deCharms, R. C. (1998). "Information coding in the cortex by independent or coordinated populations". Proceedings of the National Academy of Sciences USA. 95 (26): 15166–15168. Bibcode:1998PNAS...9515166D. doi:10.1073/pnas.95.26.15166. PMC 33931. PMID 9860939.
  • deCharms, R. C.; Blake, D. T. & Merzenich, M. M. (1998). "Optimizing sound features for cortical neurons". Science. 280 (5368): 1439–1443. Bibcode:1998Sci...280.1439C. doi:10.1126/science.280.5368.1439. PMID 9603734.
  • deCharms, R. C.; Merzenich, M. M. (1996). "Primary cortical representation of sounds by the coordination of action-potential timing". Nature. 381 (6583): 610–613. Bibcode:1996Natur.381..610D. doi:10.1038/381610a0. PMID 8637597. S2CID 4258853.

References[]

  1. ^ deCharms, Christopher (1997). Two Views of Mind: Abhidharma and Brain Science. Snow Lion.
  2. ^ Jason Pontin (2007-08-26). "Mind Over Matter with a Machine's Help". The New York Times.
  3. ^ (2006-07-01). "Seeing Your Pain: Learning to consciously alter brain activity through MRI feedback could help control pain and other disorders". Technology Review.

External links[]

Retrieved from ""