In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real numberx and integern it holds that
where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre, although he never stated it in his works.[1] The expression cos x + i sin x is sometimes abbreviated to cisx.
The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x and sin x.
As written, the formula is not valid for non-integer powers n. However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the nth roots of unity, that is, complex numbersz such that zn = 1.
which establishes the fundamental relationship between the trigonometric functions and the complex exponential function.
One can derive de Moivre's formula using Euler's formula and the exponential law for integer powers
since Euler's formula implies that the left side is equal to while the right side is equal to
Proof by induction[]
The truth of de Moivre's theorem can be established by using mathematical induction for natural numbers, and extended to all integers from there. For an integer n, call the following statement S(n):
For n > 0, we proceed by mathematical induction. S(1) is clearly true. For our hypothesis, we assume S(k) is true for some natural k. That is, we assume
Now, considering S(k + 1):
See angle sum and difference identities.
We deduce that S(k) implies S(k + 1). By the principle of mathematical induction it follows that the result is true for all natural numbers. Now, S(0) is clearly true since cos(0x) + i sin(0x) = 1 + 0i = 1. Finally, for the negative integer cases, we consider an exponent of −n for natural n.
The equation (*) is a result of the identity
for z = cos nx + i sin nx. Hence, S(n) holds for all integers n.
For an equality of complex numbers, one necessarily has equality both of the real parts and of the imaginary parts of both members of the equation. If x, and therefore also cos x and sin x, are real numbers, then the identity of these parts can be written using binomial coefficients. This formula was given by 16th century French mathematician François Viète:
In each of these two equations, the final trigonometric function equals one or minus one or zero, thus removing half the entries in each of the sums. These equations are in fact valid even for complex values of x, because both sides are entire (that is, holomorphic on the whole complex plane) functions of x, and two such functions that coincide on the real axis necessarily coincide everywhere. Here are the concrete instances of these equations for n = 2 and n = 3:
The right-hand side of the formula for cos nx is in fact the value Tn(cos x) of the Chebyshev polynomialTn at cos x.
Failure for non-integer powers, and generalization[]
De Moivre's formula does not hold for non-integer powers. The derivation of de Moivre's formula above involves a complex number raised to the integer power n. If a complex number is raised to a non-integer power, the result is multiple-valued (see failure of power and logarithm identities). For example, when n = 1/2, de Moivre's formula gives the following results:
for x = 0 the formula gives 11/2 = 1, and
for x = 2π the formula gives 11/2 = −1.
This assigns two different values for the same expression 11/2, so the formula is not consistent in this case.
On the other hand, the values 1 and −1 are both square roots of 1. More generally, if z and w are complex numbers, then
is multi-valued while
is not. However, it is always the case that
is one of the values of
Roots of complex numbers[]
A modest extension of the version of de Moivre's formula given in this article can be used to find the nth roots of a complex number (equivalently, the power of 1/n).
If z is a complex number, written in polar form as
then the nnth roots of z are given by
where k varies over the integer values from 0 to n − 1.
This formula is also sometimes known as de Moivre's formula.[2]
Analogues in other settings[]
Hyperbolic trigonometry[]
Since cosh x + sinh x = ex, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integersn,
If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x)n.[3]
Combining de Moivre's formula with the hyperbolic version, the family of logarithmic spirals satisfy the functional equation with the circle as the degenerate case .
Extension to complex numbers[]
The formula holds for any complex number
where
Quaternions[]
To find the roots of a quaternion there is an analogous form of de Moivre's formula. A quaternion in the form
can be represented in the form
In this representation,
and the trigonometric functions are defined as
In the case that a2 + b2 + c2 ≠ 0,
that is, the unit vector. This leads to the variation of De Moivre's formula:
Consider the following matrix
. Then . This fact (although it can be proven in the very same way as for complex numbers) is a direct consequence of the fact that the space of matrices of type is isomorphic to the complex plane.
^Lial, Margaret L.; Hornsby, John; Schneider, David I.; Callie J., Daniels (2008). College Algebra and Trigonometry (4th ed.). Boston: Pearson/Addison Wesley. p. 792. ISBN9780321497444.