Fatty acid amide

From Wikipedia, the free encyclopedia
Structure of anandamide, a FAA.

Fatty acid amides (FAAs) are amides formed from a fatty acid and an amine. In nature, many FAAs have ethanolamine as the amine component. Also known as N-acylethanolamines, they contain the functionality RC(O)N(H)CH2CH2OH. A well known example is anandamide. Other fatty acid amides are fatty acid primary amides (FAPAs). They contain the functionality RC(O)NH2). Oleamide is an example of this class of FAPAs.[1]

Natural occurrences[]

FAAs play a role in intracellular signalling. The signalling is controlled in part by fatty acid amide hydrolases, which convert the amide to the parent fatty acid. One example of signaling is induced by the binding of anandamide to the cannabinoid receptors.[1]

Aliphatic amides can be found in Zanthoxylum species found in Nigeria.[2]

See also[]

References[]

  1. ^ a b McKinney, Michele K.; Cravatt, Benjamin F. (2005). "Structure and Function of Fatty Acid Amide Hydrolase". Annual Review of Biochemistry. 74 (1): 411–432. doi:10.1146/annurev.biochem.74.082803.133450. ISSN 0066-4154. PMID 15952893.
  2. ^ The Nigerian Zanthoxylum; Chemical and biological values. S. K. Adesina, Afr. J. Trad. CAM, 2005, volume 2, issue 3, pages 282-301 (article)

Further reading[]

Retrieved from ""