In mathematics , the Fejér kernel is a summability kernel used to express the effect of Cesàro summation on Fourier series . It is a non-negative kernel, giving rise to an approximate identity . It is named after the Hungarian mathematician Lipót Fejér (1880–1959).
Plot of several Fejér kernels
Definition [ ]
The Fejér kernel is defined as
F
n
(
x
)
=
1
n
∑
k
=
0
n
−
1
D
k
(
x
)
,
{\displaystyle F_{n}(x)={\frac {1}{n}}\sum _{k=0}^{n-1}D_{k}(x),}
where
D
k
(
x
)
=
∑
s
=
−
k
k
e
i
s
x
{\displaystyle D_{k}(x)=\sum _{s=-k}^{k}{\rm {e}}^{isx}}
is the k th order Dirichlet kernel . It can also be written in a closed form as
F
n
(
x
)
=
1
n
(
sin
n
x
2
sin
x
2
)
2
=
1
n
(
1
−
cos
(
n
x
)
1
−
cos
x
)
{\displaystyle F_{n}(x)={\frac {1}{n}}\left({\frac {\sin {\frac {nx}{2}}}{\sin {\frac {x}{2}}}}\right)^{2}={\frac {1}{n}}\left({\frac {1-\cos(nx)}{1-\cos x}}\right)}
,
where this expression is defined.[1]
The Fejér kernel can also be expressed as
F
n
(
x
)
=
∑
|
k
|
≤
n
−
1
(
1
−
|
k
|
n
)
e
i
k
x
{\displaystyle F_{n}(x)=\sum _{|k|\leq n-1}\left(1-{\frac {|k|}{n}}\right)e^{ikx}}
.
Properties [ ]
The Fejér kernel is a positive summability kernel. An important property of the Fejér kernel is
F
n
(
x
)
≥
0
{\displaystyle F_{n}(x)\geq 0}
with average value of
1
{\displaystyle 1}
.
Convolution [ ]
The convolution Fn is positive: for
f
≥
0
{\displaystyle f\geq 0}
of period
2
π
{\displaystyle 2\pi }
it satisfies
0
≤
(
f
∗
F
n
)
(
x
)
=
1
2
π
∫
−
π
π
f
(
y
)
F
n
(
x
−
y
)
d
y
.
{\displaystyle 0\leq (f*F_{n})(x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(y)F_{n}(x-y)\,dy.}
Since
f
∗
D
n
=
S
n
(
f
)
=
∑
|
j
|
≤
n
f
^
j
e
i
j
x
{\displaystyle f*D_{n}=S_{n}(f)=\sum _{|j|\leq n}{\widehat {f}}_{j}e^{ijx}}
, we have
f
∗
F
n
=
1
n
∑
k
=
0
n
−
1
S
k
(
f
)
{\displaystyle f*F_{n}={\frac {1}{n}}\sum _{k=0}^{n-1}S_{k}(f)}
, which is Cesàro summation of Fourier series.
By Young's convolution inequality ,
‖
F
n
∗
f
‖
L
p
(
[
−
π
,
π
]
)
≤
‖
f
‖
L
p
(
[
−
π
,
π
]
)
{\displaystyle \|F_{n}*f\|_{L^{p}([-\pi ,\pi ])}\leq \|f\|_{L^{p}([-\pi ,\pi ])}}
for every
1
≤
p
≤
∞
{\displaystyle 1\leq p\leq \infty }
for
f
∈
L
p
{\displaystyle f\in L^{p}}
.
Additionally, if
f
∈
L
1
(
[
−
π
,
π
]
)
{\displaystyle f\in L^{1}([-\pi ,\pi ])}
, then
f
∗
F
n
→
f
{\displaystyle f*F_{n}\rightarrow f}
a.e.
Since
[
−
π
,
π
]
{\displaystyle [-\pi ,\pi ]}
is finite,
L
1
(
[
−
π
,
π
]
)
⊃
L
2
(
[
−
π
,
π
]
)
⊃
⋯
⊃
L
∞
(
[
−
π
,
π
]
)
{\displaystyle L^{1}([-\pi ,\pi ])\supset L^{2}([-\pi ,\pi ])\supset \cdots \supset L^{\infty }([-\pi ,\pi ])}
, so the result holds for other
L
p
{\displaystyle L^{p}}
spaces,
p
≥
1
{\displaystyle p\geq 1}
as well.
If
f
{\displaystyle f}
is continuous, then the convergence is uniform, yielding a proof of the Weierstrass theorem .
One consequence of the pointwise a.e. convergence is the uniqueness of Fourier coefficients: If
f
,
g
∈
L
1
{\displaystyle f,g\in L^{1}}
with
f
^
=
g
^
{\displaystyle {\hat {f}}={\hat {g}}}
, then
f
=
g
{\displaystyle f=g}
a.e. This follows from writing
f
∗
F
n
=
∑
|
j
|
≤
n
(
1
−
|
j
|
n
)
f
^
j
e
i
j
t
{\displaystyle f*F_{n}=\sum _{|j|\leq n}\left(1-{\frac {|j|}{n}}\right){\hat {f}}_{j}e^{ijt}}
, which depends only on the Fourier coefficients.
A second consequence is that if
lim
n
→
∞
S
n
(
f
)
{\displaystyle \lim _{n\to \infty }S_{n}(f)}
exists a.e., then
lim
n
→
∞
F
n
(
f
)
=
f
{\displaystyle \lim _{n\to \infty }F_{n}(f)=f}
a.e., since Cesàro means
F
n
∗
f
{\displaystyle F_{n}*f}
converge to the original sequence limit if it exists.
See also [ ]
References [ ]
^ Hoffman, Kenneth (1988). Banach Spaces of Analytic Functions . Dover. p. 17. ISBN 0-486-45874-1 .