Fermat's factorization method

From Wikipedia, the free encyclopedia

Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares:

That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N.

Each odd number has such a representation. Indeed, if is a factorization of N, then

Since N is odd, then c and d are also odd, so those halves are integers. (A multiple of four is also a difference of squares: let c and d be even.)

In its simplest form, Fermat's method might be even slower than trial division (worst case). Nonetheless, the combination of trial division and Fermat's is more effective than either.

Basic method[]

One tries various values of a, hoping that , a square.

FermatFactor(N): // N should be odd
    a ← ceiling(sqrt(N))
    b2 ← a*a - N
    repeat until b2 is a square:
        a ← a + 1
        b2 ← a*a - N 
     // equivalently: 
     // b2 ← b2 + 2*a + 1 
     // a ← a + 1
    return a - sqrt(b2) // or a + sqrt(b2)

For example, to factor , the first try for a is the square root of 5959 rounded up to the next integer, which is 78. Then, . Since 125 is not a square, a second try is made by increasing the value of a by 1. The second attempt also fails, because 282 is again not a square.

Try: 1 2 3
a 78 79 80
b2 125 282 441
b 11.18 16.79 21

The third try produces the perfect square of 441. So, , , and the factors of 5959 are and .

Suppose N has more than two prime factors. That procedure first finds the factorization with the least values of a and b. That is, is the smallest factor ≥ the square-root of N, and so is the largest factor ≤ root-N. If the procedure finds , that shows that N is prime.

For , let c be the largest subroot factor. , so the number of steps is approximately .

If N is prime (so that ), one needs steps. This is a bad way to prove primality. But if N has a factor close to its square root, the method works quickly. More precisely, if c differs less than from , the method requires only one step; this is independent of the size of N.[citation needed]

Fermat's and trial division[]

Consider trying to factor the prime number N = 2345678917, but also compute b and ab throughout. Going up from , we can tabulate:

a 48,433 48,434 48,435 48,436
b2 76,572 173,439 270,308 367,179
b 276.7 416.5 519.9 605.9
ab 48,156.3 48,017.5 47,915.1 47,830.1

In practice, one wouldn't bother with that last row, until b is an integer. But observe that if N had a subroot factor above , Fermat's method would have found it already.

Trial division would normally try up to 48,432; but after only four Fermat steps, we need only divide up to 47830, to find a factor or prove primality.

This all suggests a combined factoring method. Choose some bound ; use Fermat's method for factors between and . This gives a bound for trial division which is . In the above example, with the bound for trial division is 47830. A reasonable choice could be giving a bound of 28937.

In this regard, Fermat's method gives diminishing returns. One would surely stop before this point:

a 60,001 60,002
b2 1,254,441,084 1,254,561,087
b 35,418.1 35,419.8
ab 24,582.9 24,582.2

Sieve improvement[]

When considering the table for , one can quickly tell that none of the values of are squares:

a 48,433 48,434 48,435 48,436
b2 76,572 173,439 270,308 367,179
b 276.7 416.5 519.9 605.9

It is not necessary to compute all the square-roots of , nor even examine all the values for a. Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square. Thus, must be 1 mod 20, which means that a is 1, 9, 11 or 19 mod 20; it will produce a which ends in 4 mod 20 and, if square, b will end in 2 or 8 mod 10.

This can be performed with any modulus. Using the same ,

modulo 16: Squares are 0, 1, 4, or 9
N mod 16 is 5
so can only be 9
and a must be 3 or 5 or 11 or 13 modulo 16
modulo 9: Squares are 0, 1, 4, or 7
N mod 9 is 7
so can only be 7
and a must be 4 or 5 modulo 9

One generally chooses a power of a different prime for each modulus.

Given a sequence of a-values (start, end, and step) and a modulus, one can proceed thus:

FermatSieve(N, astart, aend, astep, modulus)
    a ← astart
    do modulus times:
        b2 ← a*a - N
        if b2 is a square, modulo modulus:
            FermatSieve(N, a, aend, astep * modulus, NextModulus)
        endif
        a ← a + astep
    enddo

But the recursion is stopped when few a-values remain; that is, when (aend-astart)/astep is small. Also, because a's step-size is constant, one can compute successive b2's with additions.

A further modular improvement can be made by applying the division algorithm as an affine transformation, that is , , , over any integer ring where . After a small amount of algebra, one can conclude that and where s and t are identical to determining the carries one does in multiplying the divisors over base .[citation needed]

Multiplier improvement[]

Fermat's method works best when there is a factor near the square-root of N.

If the approximate ratio of two factors () is known, then the rational number can be picked near that value. For example, if , then is a good estimate for the smaller of a divisor pair. , and the factors are roughly equal: Fermat's, applied to Nuv, will find them quickly. Then and . (Unless c divides u or d divides v.) A further generalization of this approach assumes that , meaning that .

Generally, if the ratio is not known, various values can be tried, and try to factor each resulting Nuv. R. Lehman devised a systematic way to do this, so that Fermat's plus trial division can factor N in time.[1]

Other improvements[]

The fundamental ideas of Fermat's factorization method are the basis of the quadratic sieve and general number field sieve, the best-known algorithms for factoring large semiprimes, which are the "worst-case". The primary improvement that quadratic sieve makes over Fermat's factorization method is that instead of simply finding a square in the sequence of , it finds a subset of elements of this sequence whose product is a square, and it does this in a highly efficient manner. The end result is the same: a difference of square mod n that, if nontrivial, can be used to factor n.

See also[]

Notes[]

  1. ^ Lehman, R. Sherman (1974). "Factoring Large Integers" (PDF). Mathematics of Computation. 28 (126): 637–646. doi:10.2307/2005940.

References[]

External links[]

Retrieved from ""