Great ditrigonal icosidodecahedron

From Wikipedia, the free encyclopedia
Great ditrigonal icosidodecahedron
Great ditrigonal icosidodecahedron.png
Type Uniform star polyhedron
Elements F = 32, E = 60
V = 20 (χ = −8)
Faces by sides 20{3}+12{5}
Wythoff symbol 3/2 | 3 5
3 | 3/2 5
3 | 3 5/4
3/2 | 3/2 5/4
Symmetry group Ih, [5,3], *532
Index references U47, C61, W87
Dual polyhedron Great triambic icosahedron
Vertex figure Great ditrigonal icosidodecahedron vertfig.png
((3.5)3)/2
Gidtid
3D model of a great ditrigonal icosidodecahedron

In geometry, the great ditrigonal icosidodecahedron (or great ditrigonary icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U47. It has 32 faces (20 triangles and 12 pentagons), 60 edges, and 20 vertices.[1] It has 4 Schwarz triangle equivalent constructions, for example Wythoff symbol 3 | 3 54 gives Coxeter diagram CDel label5-4.pngCDel branch 10ru.pngCDel split2.pngCDel node.png = CDel node h3.pngCDel 5-2.pngCDel node.pngCDel 3.pngCDel node.png. It has extended Schläfli symbol a{52,3} or c{3,52}, as an altered great stellated dodecahedron or converted great icosahedron.

Its circumradius is 32 times the length of its edge,[2] a value it shares with the cube.

Related polyhedra[]

Its convex hull is a regular dodecahedron. It additionally shares its edge arrangement with the small ditrigonal icosidodecahedron (having the triangular faces in common), the ditrigonal dodecadodecahedron (having the pentagonal faces in common), and the regular compound of five cubes.

a{5,3} a{5/2,3} b{5,5/2}
CDel label5-2.pngCDel branch 10ru.pngCDel split2.pngCDel node.png = CDel node h3.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel label5-4.pngCDel branch 10ru.pngCDel split2.pngCDel node.png = CDel node h3.pngCDel 5-2.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node h3.pngCDel 5-2.pngCDel node.png
Small ditrigonal icosidodecahedron.png
Small ditrigonal icosidodecahedron
Great ditrigonal icosidodecahedron.png
Great ditrigonal icosidodecahedron
Ditrigonal dodecadodecahedron.png
Ditrigonal dodecadodecahedron
Dodecahedron.png
Dodecahedron (convex hull)
Compound of five cubes.png
Compound of five cubes

References[]

  1. ^ Maeder, Roman. "47: great ditrigonal icosidodecahedron". MathConsult.{{cite web}}: CS1 maint: url-status (link)
  2. ^ Weisstein, Eric W (2003), CRC concise encyclopedia of mathematics, Boca Raton: Chapman & Hall/CRC, ISBN 1-58488-347-2

External links[]


Retrieved from ""