Hyperaccumulators table – 2 : Nickel

From Wikipedia, the free encyclopedia

This list covers known nickel hyperaccumulators, accumulators or plant species tolerant to nickel.

See also:

hyperaccumulators and contaminants : Ni – accumulation rates
Contaminant Accumulation rates (in mg/kg of dry weight) Latin name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Ni 9090 B.L. Burtt (Brassica) Distrib. Cyprus [1]
Ni 4480 L (Brassica) Distrib. S. Europe [1]
Ni 8170 Nyar. (Brassica) Distrib. Turkey [1]
Ni 29400 All. (Brassica) Distrib. Italy [1]
Ni 10200 subsp. Scutarinum Nyar. (Brassica) Distrib. Balkans [1]
Ni 10900 Boiss. and Balansa (Brassica) Distrib. Turkey [1]
Ni 16500 T.R. Dudley & Huber-Morath (Brassica) Distrib. Turkey [1]
Ni 20000 Boiss. (Brassica) Distrib. Turkey [1]
Ni 16300 Alyssum chondrogynum B.L. Blurtt (Brassica) Distrib. Cyprus [1]
Ni 13500 Boiss. and Balansa (Brassica) Distrib. Turkey [1]
Ni 4900 Boiss. And Hausskn. (Brassica) Distrib. Iraq, Syria [1]
Ni 18100 Boiss. (Brassica) Distrib. Turkey [1]
Ni 13500 Duby (Brassica) Distrib. Corsica [1]
Ni 10400 Boiss. (Brassica) Distrib. Turkey [1]
Ni 23600 Nyar. (Brassica) Distrib. Cyprus [1]
Ni 19600 T.R. Dudley (Brassica) Distrib. Turkey [1]
Ni 11700 T.R. Dudley & Huber-Morah (Brassica) Distrib. Turkey [1]
Ni 16500 gomb (Brassica) Distrib. Turkey [1]
Ni 4550 Halacsy (Brassica) Distrib. Greece [1]
Ni 11500 Boiss. and Hausskn. (Brassica) Distrib. Turkey [1]
Ni 3960 Boiss. and Balansa (Brassica) Distrib. Crete [1]
Ni 7700 Boiss. and Balansa (Brassica) Distrib. Turkey [1]
Ni 7390 Nyar. (Brassica) Distrib. Turkey [1]
Ni 12500 Hausskn. (Brassica) Distrib. Greece. Concentration of nickel in the seeds (1880 mg/g d. w.) is much lower than that in other plant parts.[2] [1]
Ni 13500 T.R.Dudley (Brassica) Distrib. Turkey [1]
Ni 22400 (P. candargi) Rech.f. (Brassica) Distrib. Greece [1]
Ni 13700 O.E. Schulz (Brassica) Distrib. Albania [1]
Ni 24300 Boiss. (Brassica) Distrib. Turkey [1]
Ni 7080 Wealdstandkit (Brassica) Distrib. Balkans [1]
Ni 4590 (C.A. Mey) Turez (Brassica) Distrib. Russia [1]
Ni 7290 Boiss. And Balansa (Brassica) Distrib. Turkey [1]
Ni 7600 subsp. Virgatiforme Nyar. T.R. Dudley) (Brassica) Distrib. Turkey [1]
Ni 21100 (Nyar.) T.R. Dudley (Brassica) Distrib. Turkey [1]
Ni 22200 T.R. Dudley (Brassica) Distrib. Turkey [1]
Ni 12500 Bernard ex Godronand Gren (Brassica) Distrib. Corsica [1]
Ni 7860 T.R. Dudley (Brassica) Distrib. Iraq [1]
Ni 18900 Boiss. & Hausskn. (Brassica) Distrib. Samar [1]
Ni up to 10,000 (leaves) (Brassica) Distrib. Portugal [1]
Ni 1280 Boiss. And Hausskn. (Brassica) Distrib. Iraq [1]
Ni 10200 Nyar. (Brassica) Distrib. Syria [1]
Ni 6600 Nyar. (Brassica) Distrib. Greece [1]
Ni 3420 Halacsy (Brassica) Distrib. Greece [1]
Ni 11900 Nyar. (Brassica) Distrib. Turkey [1]
Ni 17100 Boiss. (Brassica) Distrib. Turkey [1]
Ni 6230 Nyar. (Brassica) Distrib. Turkey [1]
Ni Azolla filiculoides Pacific mosquitofern Cu(A), Pb(A), Mn(A) Origin Africa; floating plant [3]
Ni 11400 sp. petri Greuter Charpion et Dittrich (Brassica) Distrib. Greece [1]
Ni 21300 (Degen) Heywood (Brassica) Distrib. Greece [1]
Ni 19200 (Boiss. & Balansa) Cullen & T.R. Dudley (Brassica) Distrib. Turkey [1]
Ni 31200 (Hausskn.) Hausskn. (Brassica) Distrib. Greece [1]
Ni Cd(H), Cs(H), Ni(H), Sr(H), Zn(H) Phytoextraction [4]
Ni Brassica juncea Indian mustard Cd(A), Cr(A), Cu(A), Pb(A), Pb(P), U(A), Zn(A) cultivated [3][4][5]
Ni H- Burkea africana Elevated levels of Ni in the embryonic axis in the seeds.[6]
Ni 1050 L. (Brassica) Distrib. Italy [1]
Ni 540–1220 Cuscuta californica var. breviflora Engelm. (Cuscutaceae) A parasite of Streptanthus polygaloides as well as other species, it can accumulate Ni if the plant host contains some. See 'metal tolerance' in Phytoremediation article. [7]
Ni Helianthus annuus Sunflower Phytoextraction & rhizofiltration [4]
Ni Hybanthus floribundus Shrub violet [8][9]
Ni Ocimum centraliafricanum Copper plant Cu(T), Ni(T) Origin Southern Africa [10]
Ni 18900 Post (Brassica) Distrib. Asia [1]
Ni 34400 (Boiss.) Hausskn. (Brassica) Distrib. Greece [1]
Ni 3140[1] Boiss. And Balansa) Pobed (Brassica) 372 plants noted; origin California (distrib. Turkey[1]) [8][11]
Ni 17600[1] (Boiss.) Pobed (Brassica) 372 plants noted; origin California (distrib. Turkey[1]) [8][11]
Ni 14,900 to 27,700, up to 32,000[12] Older leaves contain more Ca, Fe, and Cr than younger leaves, but less K, P, and Cu. Zn, Pb, Co, Mn, Mg show no significant variation due to leaf age.[12] Origin New Caledonia; 372 records of plants.[8] Ni contents in leaves of P. douarrei vary considerably due to leaf age.[12] [11]
Ni 17500 Rinorea bengalensis Ni(H) Origin Asia
Ni 18000 Rinorea niccolifera none Ni(H) Origin Philippines [13]
Ni H- Salvinia molesta Water Fern Cr(H), Ni(H), Pb(H), Zn(A) Origin India [3]
Ni H-up to 26% in xylem Origin Caledonia [1]
Ni H- Senecio coronatus Presence of nickel in the part of the fruit covering the radicle and in the radicle itself.[14]
Ni 1000 Shorea tenuiramulosa (Dipterocarpaceae) Philippine tree Proctor et al. . (1989)
Ni Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Pb(H), Zn(A) Native to North America [3][8][15]
Ni 21,500 Bailey (Stackhousiaceae) Origin western Australia Batianoff et al. 1990.
Ni 14800 Streptanthus polygaloides Gray (Brassica) Milkwort Jewelflower Ni-hyperaccumulation protects S. polygaloides against fungal and bacterial pathogens. [1]
Ni 2000 Spruner ex Boiss. (Brassica) Distrib. Greece [1]
Ni 16200[1] Thlaspi caerulescens Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Pb(H), Zn(H) phytoextraction [1][3][4][8][16][17][18][19]
Ni 52120 Thlaspi cypricum Brnm. (Brassica) Distrib. Cyprus [1]
Ni 20800 Boiss. (Brassica) Distrib. Turkey [1]
Ni 3000 Halacsy (Brassica) Distrib. Greece [1]
Ni 12000 Halacsy (Brassica) Distrib. Greece [1]
Ni 2440 H. Boissieu (Brassica) Distrib. Japan [1]
Ni 26900 Hedge (Brassica) Distrib. Turkey [1]
Ni 13600 Heuffel (Brassica) Distrib. Yugoslavia [1]
Ni 5530 Thlaspi montanum L. var. Montanum (Brassica) Distrib. U.S.A. Ni-hyperaccumulation protects T. montanum against fungal and bacterial pathogens. [1]
Ni H- (Brassica) Sp. endemic to serpentine soils in Greece and Albania. Ni relatively abundant in some parts of the seed (mainly the micropyle).[20]
Ni 4000 Boiss. and Heldr. (Brassica) Distrib. Greece [1]
Ni 35600 (Boiss.) Hedge (Brassica) distrib. Turkey, Syria [1]
Ni 18300 (L.) Gaudin var. corymbosum (Gay) (Brassica) Central Europe [1]
Ni 31000 (as T. alpinim subsp. Sylvium) (Brassica) Central Europe [1]
Ni 1800 Hausskn. (Brassica) Distrib. Greece [1]
Ni 7000 ( only 54 in fruits) Elm. (Meliaceae) Origin Philippines. Baker et al. (1992) [21]

Notes

  • In the genus Alyssum, free histamin (His) is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. There is a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Thus ATP-PRT expression may play a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species. But this is not the complete hyperaccumulator phenotype because His-(GM-)overproducing lines do not exhibit increased Ni concentrations in either xylem sap or shoot tissue.[22]
  • Alpine pennycress or «Alpine Pennygrass» is also found as «Alpine Pennycrest» in (some books).

Reference sources with notes[]

  • The references are so far mostly from academic trial papers, experiments and generally of exploration of that field.
  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv [1] Majeti Narasimha Vara Prasad, Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant Physiol. Vol.17 no.1 Londrina Jan./Mar. 2005
  2. ^ Brooks RR, Phytochemistry of hyperaccumulators. In: Brooks RR, ed. Plants that hyperaccumulate heavy metals. New York, 1998: CAB International, 15-53, cited in [2] Nickel Localization in Seeds of the Metal Hyperaccumulator Thlaspi pindicum Hausskn., par G. K. Psaras and Y. Manetas. Annals of Botany 88: 513-516, 2001
  3. ^ a b c d e McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
  4. ^ a b c d McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19
  5. ^ B. Muthukumar, B. Yakubov, DE Salt: Transcriptional activation and localization of expression of Brassica juncea putative metal transport protein BjMTP1 BMC Plant Biology 2007, 7:32 doi:10.1186/1471-2229-7-32
  6. ^ E.T.F. Witkowski, I.M Weiersbye-Witkowski, W.J. Przybylowicz, J. Mesjasz-Przybylowicz: Nuclear microprobe studies of elemental distributions in dormant seeds of Burkea africana. Nuclear Instruments and Methods in Physics Research 1997, B130: 381-387
  7. ^ [3] R.S. Boyd and S.N. Martens. The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8 (1998) pp.1–7
  8. ^ a b c d e f McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891
  9. ^ Reeves 1992
  10. ^ Howard-Williams, C. (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. doi:10.2307/2258533. JSTOR 2258533.
  11. ^ a b c Brooks et al. 1977
  12. ^ a b c [4] R.S. Boyd, T. Jaffré and J. W. Odom. Variation in Nickel Content in the Nickel-Hyperaccumulating Shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica, Volume 31 Page 403 - September 1999. Ni contents in leaves of P. douarrei vary considerably due to leaf age. Older leaves contain twice as much Ni as younger leaves, and leaf Ni content does not correlate significantly with neither plant size nor soil Ni content. Variations in accumulation differ greatly among branches within individuals as well as between individuals, but this intraplant variability was not strongly correlated with the mean leaf Ni content of an individual shrub. Epiphyll cover is increased on the upper surface of older leaves. The dominant leafy liverwort epiphyll contains 400ppm (relatively high), suggesting that epiphylls of Ni hyperaccumulators obtain some Ni from host leaves
  13. ^ Fernando, E.; Quimado, M.; Doronila, A. (2014). "Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines". PhytoKeys (37): 1–13. doi:10.3897/phytokeys.37.7136. PMC 4023331. PMID 24843295.
  14. ^ Przybylowicz WJ, Pineda CA, Prozesky VM, Mesjasz-Przybylowicz J., Investigation of Ni hyperaccumulation by the true elemental imageing. Nuclear Instruments and Methods in Physics Research 1995, B104: 176-181
  15. ^ Srivastav 1994
  16. ^ "Archived copy". Archived from the original on 2007-03-11. Retrieved 2006-10-28.{{cite web}}: CS1 maint: archived copy as title (link), Conseil National de Recherches du Canada, Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations, par T.A. Delorme, J.V. Gagliardi, J.S. Angle, et R.L. Chaney
  17. ^ Baker & Brooks, 1989
  18. ^ "Archived copy". Archived from the original on 2007-03-11. Retrieved 2006-10-16.{{cite web}}: CS1 maint: archived copy as title (link) E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction.
  19. ^ Phytoremediation Decision Tree, ITRC
  20. ^ [5] G. K. Psaras and Y. Manetas, Nickel Localization in Seeds of the Metal Hyperaccumulator Thlaspi pindicum Hausskn.. Annals of Botany 88: 513-516, 2001
  21. ^ A.J.M. Baker, J. Proctor, M.M.J. van Balgooy, R.D. Reeves. Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. Pp 291–304 in Baker AJM, Proctor J, Reeves RD (eds) The Vegetation of Ultramafic (Serpentine) Soils. GB-Andover: Intercept (1992)
  22. ^ [6] Robert A. Ingle, Sam T. Mugford, Jonathan D. Rees, Malcolm M. Campbell and J. Andrew C. Smith, Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator Plants. The Plant Cell 2005, 17:2089-2106. Full text online.

See also[]

Retrieved from ""