List of hyperaccumulators

From Wikipedia, the free encyclopedia

This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).

CrSee also:

Hyperaccumulators table – 1[]

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Se, Zn – accumulation rates
Contaminant Accumulation rates (in mg/kg dry weight) Binomial name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Al A- Agrostis castellana Highland Bent Grass As(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]
Al 1000 Hordeum vulgare Barley 25 records of plants. [2][3]
Al Hydrangea spp. Hydrangea (a.k.a. Hortensia)
Al Aluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[4] Melastoma malabathricum L. Blue Tongue, or Native Lassiandra P competes with Al and reduces uptake.[5]
Al Solidago hispida (Solidago canadensis L.) Hairy Goldenrod Origin Canada. [2][3]
Al 100 Vicia faba Horse Bean [2][3]
Ag 10-1200 Salix miyabeana Willow Ag(T) Seemed able to adapt to high AgNO3 concentrations on a long timeline [6]
Ag Brassica napus Rapeseed plant Cr, Hg, Pb, Se, Zn Phytoextraction [7][8]
Ag Salix spp. Osier spp. Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalix);[9] Potassium ferrocyanide (S. babylonica L.)[10] Phytoextraction. Perchlorate (wetland halophytes) [8]
Ag Amanita strobiliformis European Pine Cone Lepidella Ag(H) Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas [11]
Ag 10-1200 Brassica juncea Indian Mustard Ag(H) Can form alloys of silver-gold-copper [12]
As 100 Agrostis capillaris L. Common Bent Grass, Browntop. (= A. tenuris) Al(A), Mn(A), Pb(A), Zn(A) [3]
As H- Agrostis castellana Highland Bent Grass Al(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]
As 1000 Agrostis tenerrima Trin. Colonial bentgrass 4 records of plants [3][13]
As 2-1300 Cyanoboletus pulverulentus Ink Stain Bolete contains dimethylarsinic acid Europe [14]
As 27,000 (fronds)[15] Pteris vittata L. Ladder brake fern or Chinese brake fern 26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[16] Root extracts reduce arsenate to arsenite.[17]
As 100-7000 Sarcosphaera coronaria pink crown, violet crown-cup, or violet star cup As(H) Ectomycorrhizal ascomycete, known from Europe Stijve et al., 1990, in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
Be No reports found for accumulation [3]
Cr Azolla spp. mosquito fern, duckweed fern, fairy moss, water fern [3][18]
Cr H- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][19]
Cr Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) Cultivated in agriculture. [1][8][20]
Cr Brassica napus Rapeseed plant Ag, Hg, Pb, Se, Zn Phytoextraction [7][8]
Cr A- Vallisneria americana Tape Grass Cd(H), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Cr 1000 Dicoma niccolifera 35 records of plants [3]
Cr roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22] Eichhornia crassipes Water Hyacinth Cd(H), Cu(A), Hg(H),[21] Pb(H),[21] Zn(A). Also Cs, Sr, U,[21][23] and pesticides.[24] Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.[21] [1]
Cr Helianthus annuus Sunflower Phytoextraction et rhizofiltration [1][8]
Cr A- Hydrilla verticillata Hydrilla Cd(H), Hg(H), Pb(H) [1]
Cr Medicago sativa Alfalfa [3][26]
Cr Pistia stratiotes Water lettuce Cd(T), Hg(H), Cr(H), Cu(T) [1][3][27]
Cr Salix spp. Osier spp. Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalix);[9] Potassium ferrocyanide (S. babylonica L.)[10] Phytoextraction. Perchlorate (wetland halophytes) [8]
Cr Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) [1][3][28]
Cr Spirodela polyrhiza Giant Duckweed Cd(H), Ni(H), Pb(H), Zn(A) Native to North America. [1][3][28]
Cr 100 Jamesbrittenia fodina (Wild) Hilliard
(a.k.a. Sutera fodina Wild)
[3][29][30]
Cr A- Thlaspi caerulescens Alpine Pennycress, Alpine Pennygrass Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[31] [1][3][8][32][33][34]
Cu 9000 [35]
Cu Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Pb(H), Zn(H) Origin Japan. [1]
Cu A- Azolla filiculoides Pacific mosquitofern Ni(A), Pb(A), Mn(A) Origin Africa. Floating plant. [1]
Cu H- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][19]
Cu Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [1][8][20]
Cu H- Vallisneria americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Cu Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]
Cu 1000
(Lamiaceae)
Copper flower 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[36] [3][33]
Cu Helianthus annuus Sunflower Phytoextraction with rhizofiltration [1][33]
Cu 1000 Larrea tridentata Creosote Bush 67 records of plants. Origin U.S. [3][33]
Cu H- Lemna minor Duckweed Pb(H), Cd(H), Zn(A) Native to North America and widespread worldwide. [1]
Cu Ocimum centraliafricanum Copper plant Cu(T), Ni(T) Origin Southern Africa [37]
Cu T- Pistia stratiotes Water Lettuce Cd(T), Hg(H), Cr(H) Pantropical. Origin South U.S.A. Aquatic herb. [1]
Cu Thlaspi caerulescens Alpine pennycress, Alpine Pennycress, Alpine Pennygrass Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Cu noticeably limits its growth.[34] [1][3][8][31][32][33][34]
Mn A- Agrostis castellana Highland Bent Grass Al(A), As(A), Pb(A), Zn(A) Origin Portugal. [1]
Mn Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Pb(A) Origin Africa. Floating plant. [1]
Mn Brassica juncea L. Indian mustard [8][20]
Mn 23,000 (maximum) 11,000 (average) leaf Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang koshiabura Origin Japan. Forest tree. [38]
Mn Helianthus annuus Sunflower Phytoextraction et rhizofiltration [8]
Mn 1000 Macadamia neurophylla
(now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast)
28 records of plants [3][39]
Mn 200 [3]
Hg A- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][19]
Hg Brassica napus Rapeseed plant Ag, Cr, Pb, Se, Zn Phytoextraction [7][8]
Hg Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]
Hg H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Pb(H) [1]
Hg 1000 Pistia stratiotes Water lettuce Cd(T), Cr(H), Cu(T) 35 records of plants [1][3][33][40]
Hg Salix spp. Osier spp. Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalix);[9] Potassium ferrocyanide (S. babylonica L.)[10] Phytoextraction. Perchlorate (wetland halophytes) [8]
Mo 1500 Thlaspi caerulescens (Brassicaceae) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) phytoextraction [1][3][8][31][32][33][34]
Naphthalene Festuca arundinacea Tall Fescue Increases catabolic genes and the mineralization of naphthalene. [41]
Naphthalene Trifolium hirtum Pink clover, rose clover Decreases catabolic genes and the mineralization of naphthalene. [41]
Pb A- Agrostis castellana 'Highland Bent Grass Al(A), As(H), Mn(A), Zn(A) Origin Portugal. [1]
Pb Ambrosia artemisiifolia Ragweed [7]
Pb Armeria maritima Seapink Thrift [7]
Pb Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Zn(H) Origin Japan. [1]
Pb A- Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Mn(A) Origin Africa. Floating plant. [1]
Pb A- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Cu(H), Hg(A) Origin India. Aquatic emergent species. [1][19]
Pb H- Brassica juncea Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) 79 recorded plants. Phytoextraction [1][3][7][8][20][31][33][34][42]
Pb Brassica napus Rapeseed plant Ag, Cr, Hg, Se, Zn Phytoextraction [7][8]
Pb Brassica oleracea Ornemental Kale et Cabbage, Broccoli [7]
Pb H- Vallisneria americana Tape Grass Cd(H), Cr(A), Cu(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Pb Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]
Pb Festuca ovina Blue Sheep Fescue [7]
Pb Morning glory Phytoextraction et rhizofiltration [1][7][8][9][42]
Pb H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Hg(H) [1]
Pb H- Lemna minor Duckweed Cd(H), Cu(H), Zn(H) Native to North America and widespread worldwide. [1]
Pb Salix viminalis Common Osier Cd, U, Zn,[9] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.);[8] Potassium ferrocyanide (S. babylonica L.)[10] Phytoextraction. Perchlorate (wetland halophytes) [9]
Pb H- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]
Pb Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Zn(A) Native to North America. [1][3][28]
Pb Thlaspi caerulescens (Brassicaceae) Alpine pennycress, Alpine pennygrass Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) Phytoextraction. [1][3][8][31][32][33][34]
Pb Thlaspi rotundifolium Round-leaved Pennycress [7]
Pb Triticum aestivum Common Wheat [7]
Se .012-20 Amanita muscaria Fly agaric Cap contains higher concentrations than stalks[43]
Se Brassica juncea Indian mustard Rhizosphere bacteria enhance accumulation.[44] [8]
Se Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Zn Phytoextraction. [7][8]
Se Low rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass. Chara canescens Desv. & Lois Muskgrass Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[46] [47]
Se Bassia scoparia
(a.k.a. Kochia scoparia)
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweed U,[9] Cr, Pb, Hg, Ag, Zn Perchlorate (wetland halophytes). Phytoextraction. [1][8]
Se Salix spp. Osier spp. Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalis);[9] Potassium ferrocyanide (S. babylonica L.)[10] Phytoextraction. Perchlorate (wetland halophytes). [8]
Zn A- Agrostis castellana Highland Bent Grass Al(A), As(H), Mn(A), Pb(A) Origin Portugal. [1]
Zn Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H) Origin Japan. [1]
Zn Brassicaceae Mustards, mustard flowers, crucifers or cabbage family Cd(H), Cs(H), Ni(H), Sr(H) Phytoextraction [8]
Zn Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) [1][8][20]
Zn Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Se Phytoextraction [7][8]
Zn Helianthus annuus Sunflower Phytoextraction et rhizofiltration [8][9]
Zn Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]
Zn Salix viminalis Common Osier Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U (S. viminalis);[9] Potassium ferrocyanide (S. babylonica L.)[10] Phytoextraction. Perchlorate (wetland halophytes). [9]
Zn A- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]
Zn 1400 Silene vulgaris (Moench) Garcke (Caryophyllaceae) Bladder campion Ernst et al. (1990)
Zn Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Pb(H) Native to North America. [1][3][28]
Zn H-10,000 Thlaspi caerulescens (Brassicaceae) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[31] [1][3][8][32][33][34][42]
Zn Trifolium pratense Red Clover Nonmetal accumulator. Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[31]

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References[]

  1. ^ Jump up to: a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons, page 898.
  2. ^ Jump up to: a b c Grauer & Horst 1990
  3. ^ Jump up to: a b c d e f g h i j k l m n o p q r s t u v w x y z McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891.
  4. ^ Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878.
  5. ^ Warm Climate Production Guidelines for Japanese Hydrangeas. Archived 2009-02-16 at the Wayback Machine By Rick Shoellhorn and Alexis A. Richardson. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 5, 2005.
  6. ^ Guidi Nissim W.; Pitre F.E.; Kadri H.; Desjardins D.; Labrecque M. (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation. 16 (4): 660–670. doi:10.1080/15226514.2013.856840. PMID 24933876.
  7. ^ Jump up to: a b c d e f g h i j k l m n A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray. Archived from the original on February 24, 2011.
  8. ^ Jump up to: a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Phytoremediation. By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19.
  9. ^ Jump up to: a b c d e f g h i j k Ulrich Schmidt (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". J. Environ. Qual. 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID 14674516. Archived from the original on 2007-02-25.
  10. ^ Jump up to: a b c d e f Yu XZ, Zhou PH, Yang YM (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. doi:10.1007/s10646-006-0081-5. PMID 16703454.
  11. ^ Borovička J.; Řanda Z.; Jelínek E.; Kotrba P.; Dunn C.E. (2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111 (Pt 11): 1339–44. doi:10.1016/j.mycres.2007.08.015. PMID 18023163.
  12. ^ R.G. Haverkamp and A.T. Marshall and D. van Agterveld (2007). "Pick your Carats: Nanoparticles of Gold-Silver-Copper Alloy Produced In Vivo". J. Nanoparticle Res. 9 (4): 697–700. Bibcode:2007JNR.....9..697H. doi:10.1007/s11051-006-9198-y.
  13. ^ Porter and Peterson 1975
  14. ^ Braeuer S.; Goessler W.; Kameník J.; Konvalinková T.; Žigová A.; Borovička J. (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry. 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMC 6118325. PMID 29037683.
  15. ^ Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. doi:10.1104/pp.008185. PMC 166674. PMID 12428020. 18 days' hydroponic experiment with varying concentrations of arsenate and P. Within 8 h, 50% to 78% of the As taken up is distributed to the fronds, which take from 1.3 to 6.7 times more As than the roots do. No P for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the P supply is increased, As uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the P concentration in the roots, but not in the fronds. P in the uptake solution markedly decreases arsenate uptake. The presence or absence of P does not affect the uptake of arsenite, which translocates more easily than arsenate.
  16. ^ C. Tu, L.Q. Ma & B. Bondada (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality. 31 (5): 1671–5. doi:10.2134/jeq2002.1671. PMID 12371185. Archived from the original on 2006-09-27. Retrieved 2006-09-19.
  17. ^ Gui-Lan Duan; Y.-G. Zhu; Y.-P. Tong; C. Cai; R. Kneer (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9. doi:10.1104/pp.104.057422. PMC 1104199. PMID 15834011. Yeast (Saccharomyces c.) has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. Pteris vittata has an arsenate reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors (P as a competitive inhibitor, arsenite as a noncompetitive inhibitor).
  18. ^ Priel 1995.
  19. ^ Jump up to: a b c d Gurta et al. 1994
  20. ^ Jump up to: a b c d e L.E. Bennetta; J.L. Burkheada; K.L. Halea; N. Terry; M. Pilona; E.A. H. Pilon-Smits (2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality. 32 (2): 432. doi:10.2134/jeq2003.0432. Archived from the original on 2007-03-10.
  21. ^ Jump up to: a b c d e Handbook of Energy Crops. By J. Duke. Available only online. An excellent source of information on numerous plants.
  22. ^ "Biology Briefs". BioScience. 26 (3): 223–224. 1976. doi:10.2307/1297259. JSTOR 1297259.
  23. ^ Jump up to: a b c d e Phytoremediation of radionuclides. Archived 2012-01-11 at the Wayback Machine
  24. ^ Jump up to: a b c d e J.K. Lan (March 2004). "Recent developments of phytoremediation". J. Geol. Hazards Environ. Preserv. 15 (1): 46–51. Archived from the original on 2011-05-20.
  25. ^ Tropical feeds. Feed information summaries and nutritive values. By B. Gohl. 1981. FAO Animal Production and Health Series 12. FAO, Rome. Cited in Handbook of Energy Crops. By J. Duke.
  26. ^ Tiemmann et al. 1994
  27. ^ Sen et al. 1987
  28. ^ Jump up to: a b c d Srivastav 1994
  29. ^ Wild 1974
  30. ^ Brooks & Yang 1984
  31. ^ Jump up to: a b c d e f g T.A. Delorme; J.V. Gagliardi; J.S. Angle; R.L. Chaney (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Can. J. Microbiol. 47 (8): 773–6. doi:10.1139/cjm-47-8-773. PMID 11575505. Archived from the original on 2007-03-11.
  32. ^ Jump up to: a b c d e Majeti Narasimha Vara Prasad (Jan–Mar 2005). "Nickelophilous plants and their significance in phytotechnologies". Braz. J. Plant Physiol. 17 (1): 113–128. doi:10.1590/s1677-04202005000100010.
  33. ^ Jump up to: a b c d e f g h i j Baker & Brooks, 1989
  34. ^ Jump up to: a b c d e f g E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–26. doi:10.2134/jeq2001.1919. PMID 11789997. Archived from the original on 2007-03-01. Retrieved 2006-09-19.CS1 maint: multiple names: authors list (link)
  35. ^ R.S. Morrison; R.R. Brooks; R.D. Reeves; F. Malaisse (December 1979). "Copper and cobalt uptake by metallophytes from Zaïre". Plant and Soil. 53 (4): 535–539. doi:10.1007/bf02140724.
  36. ^ R. R. Brooks (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil. 48 (2): 541–544. doi:10.1007/BF02187261.
  37. ^ Howard-Williams, C. (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. doi:10.2307/2258533. JSTOR 2258533.
  38. ^ Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition. 59 (4): 591–602. doi:10.1080/00380768.2013.807213.
  39. ^ Baker & Walker 1990
  40. ^ Atri 1983
  41. ^ Jump up to: a b S.D. Siciliano; J.J. Germida; K. Banks; C. W. Greer (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology. 69 (1): 483–9. doi:10.1128/AEM.69.1.483-489.2003. PMC 152433. PMID 12514031.
  42. ^ Jump up to: a b c Phytoremediation Decision Tree, ITRC
  43. ^ T. Stijve (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 164 (3): 201–3. doi:10.1007/BF01263031. PMID 562040.
  44. ^ Mark P. de Souza; Dara Chu; May Zhao; Adel M. Zayed; Steven E. Ruzin; Denise Schichnes & Norman Terry (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiol. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC 32133. PMID 9952452.
  45. ^ X-ray absorption spectroscopy speciation analysis.
  46. ^ Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
  47. ^ Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality. 31 (6): 2104–10. doi:10.2134/jeq2002.2104. PMID 12469862. Archived from the original on 2007-05-26. Retrieved 2006-11-02.
Retrieved from ""