Inverted snub dodecadodecahedron

From Wikipedia, the free encyclopedia
Inverted snub dodecadodecahedron
Inverted snub dodecadodecahedron.png
Type Uniform star polyhedron
Elements F = 84, E = 150
V = 60 (χ = −6)
Faces by sides 60{3}+12{5}+12{5/2}
Wythoff symbol | 5/3 2 5
Symmetry group I, [5,3]+, 532
Index references U60, C76, W114
Dual polyhedron Medial inverted pentagonal hexecontahedron
Vertex figure Inverted snub dodecadodecahedron vertfig.png
3.3.5.3.5/3
Isdid
3D model of an inverted snub dodecadodecahedron

In geometry, the inverted snub dodecadodecahedron (or vertisnub dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U60.[1] It is given a Schläfli symbol sr{5/3,5}.

Cartesian coordinates[]

Cartesian coordinates for the vertices of an inverted snub dodecadodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)),
(±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)),
(±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) and
(±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)),

with an even number of plus signs, where

β = (α2/τ+τ)/(ατ−1/τ),

where τ = (1+5)/2 is the golden mean and α is the negative real root of τα4−α3+2α2−α−1/τ, or approximately −0.3352090. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

Related polyhedra[]

Medial inverted pentagonal hexecontahedron[]

Medial inverted pentagonal hexecontahedron
DU60 medial inverted pentagonal hexecontahedron.png
Type Star polyhedron
Face DU60 facets.png
Elements F = 60, E = 150
V = 84 (χ = −6)
Symmetry group I, [5,3]+, 532
Index references DU60
dual polyhedron Inverted snub dodecadodecahedron
3D model of a medial inverted pentagonal hexecontahedron

The medial inverted pentagonal hexecontahedron (or midly petaloid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform inverted snub dodecadodecahedron. Its faces are irregular nonconvex pentagons, with one very acute angle.

Proportions[]

Denote the golden ratio by , and let be the largest (least negative) real zero of the polynomial . Then each face has three equal angles of , one of and one of . Each face has one medium length edge, two short and two long ones. If the medium length is , then the short edges have length

,

and the long edges have length

.

The dihedral angle equals . The other real zero of the polynomial plays a similar role for the medial pentagonal hexecontahedron.

See also[]

References[]

  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208 p. 124
  1. ^ Roman, Maeder. "60: inverted snub dodecadodecahedron". MathConsult.{{cite web}}: CS1 maint: url-status (link)

External links[]


Retrieved from ""