Komlós–Major–Tusnády approximation

From Wikipedia, the free encyclopedia

In theory of probability, the Komlós–Major–Tusnády approximation (also known as the KMT approximation, the KMT embedding, or the Hungarian embedding) refers to one of the two strong embedding theorems: 1) approximation of random walk by a standard Brownian motion constructed on the same probability space, and 2) an approximation of the empirical process by a Brownian bridge constructed on the same probability space. It is named after Hungarian mathematicians János Komlós, , and , who proved it in 1975.

Theory[]

Let be independent uniform (0,1) random variables. Define a uniform empirical distribution function as

Define a uniform empirical process as

The Donsker theorem (1952) shows that converges in law to a Brownian bridge Komlós, Major and Tusnády established a sharp bound for the speed of this weak convergence.

Theorem (KMT, 1975) On a suitable probability space for independent uniform (0,1) r.v. the empirical process can be approximated by a sequence of Brownian bridges such that
for all positive integers n and all , where a, b, and c are positive constants.

Corollary[]

A corollary of that theorem is that for any real iid r.v. with cdf it is possible to construct a probability space where independent[clarification needed] sequences of empirical processes and Gaussian processes exist such that

    almost surely.

References[]

  • Komlos, J., Major, P. and Tusnady, G. (1975) An approximation of partial sums of independent rv’s and the sample df. I, Wahrsch verw Gebiete/Probability Theory and Related Fields, 32, 111–131. doi: 10.1007/BF00533093
  • Komlos, J., Major, P. and Tusnady, G. (1976) An approximation of partial sums of independent rv’s and the sample df. II, Wahrsch verw Gebiete/Probability Theory and Related Fields, 34, 33–58. doi:10.1007/BF00532688
Retrieved from ""