Kroll process

From Wikipedia, the free encyclopedia

The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. The Kroll process replaced the Hunter process for almost all commercial production.[1]

Process[]

In the Kroll process, the TiCl4 is reduced by liquid magnesium to give titanium metal:

The reduction is conducted at 800–850 °C in a stainless steel retort.[2][3] Complications result from partial reduction of the TiCl4, giving to the lower chlorides TiCl2 and TiCl3. The MgCl2 can be further refined back to magnesium. The resulting porous metallic titanium sponge is purified by leaching or vacuum distillation. The sponge is crushed, and pressed before it is melted in a consumable carbon electrode vacuum arc furnace. The melted ingot is allowed to solidify under vacuum. It is often remelted to remove inclusions and ensure uniformity. These melting steps add to the cost of the product. Titanium is about six times as expensive as stainless steel.

In the Hunter process, which is not commercial, the TiCl4 from the chloride process is reduced to the metal by sodium.[3]

History and subsequent developments[]

The Kroll process was invented in 1940 by William J. Kroll in Luxembourg. After moving to the United States, Kroll further developed the method for the production of zirconium. Many methods had been applied to the production of titanium metal, beginning with a report in 1887 by Nilsen and Pettersen using sodium, which was optimized into the commercial Hunter process. In the 1920s van Arkel had described the thermal decomposition of titanium tetraiodide to give highly pure titanium. Titanium tetrachloride was found to reduce with hydrogen at high temperatures to give hydrides that can be thermally processed to the pure metal. With this background, Kroll developed both new reductants and new apparatus for the reduction of titanium tetrachloride. Its high reactivity toward trace amounts of water and other metal oxides presented challenges. Significant success came with the use of calcium as a reductant, but the resulting mixture still contained significant oxide impurities.[4] Major success using magnesium at 1000 °C using a molybdenum clad reactor, as reported to the Electrochemical Society in Ottawa.[5] Kroll's titanium was highly ductile reflecting its high purity. The Kroll process displaced the Hunter process and continues to be the dominant technology for the production of titanium metal, as well as driving the majority of the world's production of magnesium metal.

Competing technologies[]

Other technologies compete with the Kroll process.[6] In the FFC Cambridge process, titanium dioxide is reduced electrolytically as a solution in molten calcium chloride.[7]

The Hydrogen Assisted Magnesiothermic Reduction ("HAMR") process reduces TiO2 with magnesium and hydrogen to form TiH2. The TiH2 is further processed to titanium metal.[8]

See also[]

References[]

  1. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  2. ^ Habashi, F. (ed.) Handbook of Extractive Metallurgy, Wiley-VCH, Weinheim, 1997.
  3. ^ a b Heinz Sibum, Volker Günther, Oskar Roidl, Fathi Habashi, Hans Uwe Wolf (2005). "Titanium, Titanium Alloys, and Titanium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a27_095.CS1 maint: uses authors parameter (link)
  4. ^ W. Kroll “Verformbares Titan und Zirkon” (Eng: Ductile Titanium and Zirconium) Zeitschrift für anorganische und allgemeine Chemie Volume 234, p. 42-50. doi:10.1002/zaac.19372340105
  5. ^ W. J. Kroll, “The Production of Ductile Titanium” Transactions of the Electrochemical Society volume 78 (1940) 35–47.
  6. ^ Takeda, O.; Ouchi, T.; Okabe, T. H. (2020). "Recent Progress in Titanium Extraction and Recycling". Metall. Mater. Trans. B. 51 (4): 1315–1328. Bibcode:2020MMTB...51.1315T. doi:10.1007/s11663-020-01898-6.
  7. ^ G. Z. Chen; D. J. Fray; T. W. Farthing (2000). "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride". Nature. 407 (6802): 361–4. Bibcode:2000Natur.407..361C. doi:10.1038/35030069. PMID 11014188. S2CID 205008890.
  8. ^ Yang, Xia (2017). "Hydrogen Assisted Magnesiothermic Reduction (HAMR) of Commercial TiO2 to Produce Titanium Powder with Controlled Morphology and Particle Size". Materials Transactions. 58 (3): 355–360. doi:10.2320/matertrans.MK201628.

Further reading[]

  • P.Kar, Mathematical modeling of phase change electrodes with application to the FFC process, PhD thesis; UC, Berkeley, 2007.

External links[]

Retrieved from ""