Octahedral pyramid

From Wikipedia, the free encyclopedia
Octahedral pyramid
Octahedral pyramid.png
Schlegel diagram
Type Polyhedral pyramid
Schläfli symbol ( ) ∨ {3,4}
( ) ∨ r{3,3}
( ) ∨ s{2,6}
( ) ∨ [{4} + { }]
( ) ∨ [{ } + { } + { }]
Cells 9 1 {3,4} Octahedron.png
8 ( ) ∨ {3} Tetrahedron.png
Faces 20 {3}
Edges 18
Vertices 7
Dual Cubic pyramid
Symmetry group B3, [4,3,1], order 48
[3,3,1], order 24
[2+,6,1], order 12
[4,2,1], order 16
[2,2,1], order 8
Properties convex, regular-faced

In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one,[1] the triangular pyramids can be made with regular faces (as regular tetrahedrons) by computing the appropriate height.

Occurrences of the octahedral pyramid[]

The regular 16-cell has octahedral pyramids around every vertex, with the octahedron passing through the center of the 16-cell. Therefore placing two regular octahedral pyramids base to base constructs a 16-cell. The 16-cell tessellates 4-dimensional space as the 16-cell honeycomb.

Exactly 24 regular octahedral pyramids will fit together around a vertex in four-dimensional space (the apex of each pyramid). This construction yields a 24-cell with octahedral bounding cells, surrounding a central vertex with 24 edge-length long radii. The 4-dimensional content of a unit-edge-length 24-cell is 2, so the content of the regular octahedral pyramid is 1/12. The 24-cell tessellates 4-dimensional space as the 24-cell honeycomb.

The octahedral pyramid is the vertex figure for a truncated 5-orthoplex, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png.

Truncated pentacross.png

The graph of the octahedral pyramid is the only possible minimal counterexample to Negami's conjecture, that the connected graphs with planar covers are themselves projective-planar.[2]

Other polytopes[]

Cubic pyramid[]

The dual to the octahedral pyramid is a cubic pyramid, seen as a cubic base and 6 square pyramids meeting at an apex.

Cubic pyramid.png

Square-pyramidal pyramid[]

Square-pyramidal pyramid
Square pyramid pyramid.pngSquare pyramid pyramid edgecenter.png
Schlegel diagrams
Type Polyhedral pyramid
Schläfli symbol ( ) ∨ [( ) ∨ {4}]
[( )∨( )] ∨ {4} = { } ∨ {4}
{ } ∨ [{ } × { }]
{ } ∨ [{ } + { }]
Cells 6 2 { } ∨ {4} Square pyramid.png
4 { } ∨ {3} Tetrahedron.png
Faces 12 {3}
1 {4}
Edges 13
Vertices 6
Dual Self-dual
Symmetry group [4,1,1], order 8
[4,2,1], order 16
[2,2,1], order 8
Properties convex, regular-faced

The square-pyramidal pyramid, ( ) ∨ [( ) ∨ {4}], is a bisected octahedral pyramid. It has a square pyramid base, and 4 tetrahedrons along with another one more square pyramid meeting at the apex. It can also be seen in an edge-centered projection as a square bipyramid with four tetrahedra wrapped around the common edge. If the height of the two apexes are the same, it can be given a higher symmetry name [( ) ∨ ( )] ∨ {4} = { } ∨ {4}, joining an edge to a perpendicular square.[3]

The square-pyramidal pyramid can be distorted into a rectangular-pyramidal pyramid, { } ∨ [{ } × { }] or a rhombic-pyramidal pyramid, { } ∨ [{ } + { }], or other lower symmetry forms.

The square-pyramidal pyramid exists as a vertex figure in uniform polytopes of the form CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel 4.pngCDel node.png, including the bitruncated 5-orthoplex and bitruncated tesseractic honeycomb.

Bitruncated pentacross verf.pngBitruncated tesseractic honeycomb verf.png

References[]

  1. ^ Klitzing, Richard. "3D convex uniform polyhedra x3o4o - oct". 1/sqrt(2) = 0.707107
  2. ^ Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics, 26 (4): 525–536, CiteSeerX 10.1.1.605.4932, doi:10.1007/s00373-010-0934-9, MR 2669457, S2CID 121645
  3. ^ Klitzing, Richard. "Segmentotope squasc, K-4.4".

External links[]


Retrieved from ""