Order-5 octahedral honeycomb

From Wikipedia, the free encyclopedia
Order-5 octahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,4,5}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,4} Uniform polyhedron-34-t0.png
Faces {3}
Edge figure {5}
Vertex figure {4,5} H2-5-4-primal.svg
Dual {5,4,3}
Coxeter group [3,4,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,5}. It has five octahedra {3,4} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many octahedra existing around each vertex in an order-5 square tiling vertex arrangement.

Images[]

Hyperbolic honeycomb 3-4-5 poincare cc.png
Poincaré disk model
(cell centered)
H3 345 UHS plane at infinity.png
Ideal surface

Related polytopes and honeycombs[]

It a part of a sequence of regular polychora and honeycombs with octahedral cells: {3,4,p}

{3,4,p} polytopes
Space S3 H3
Form Finite Paracompact Noncompact
Name {3,4,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
 
CDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png
{3,4,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel branchu.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel branchu.png
{3,4,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
{3,4,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.png
{3,4,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
{3,4,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel label4.png
... {3,4,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png
Image Stereographic polytope 24cell.png H3 344 CC center.png Hyperbolic honeycomb 3-4-5 poincare cc.png Hyperbolic honeycomb 3-4-6 poincare cc.png Hyperbolic honeycomb 3-4-7 poincare cc.png Hyperbolic honeycomb 3-4-8 poincare cc.png Hyperbolic honeycomb 3-4-i poincare cc.png
Vertex
figure
Hexahedron.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
 
CDel nodes 11.pngCDel 2.pngCDel node 1.png
Square tiling uniform coloring 1.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel nodes.png
CDel branchu 11.pngCDel 2.pngCDel branchu 11.png
H2-5-4-primal.svg
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel branch.png
H2 tiling 247-4.png
{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 248-4.png
{4,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel branch.pngCDel label4.png
H2 tiling 24i-4.png
{4,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png

Order-6 octahedral honeycomb[]

Order-6 octahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,4,6}
{3,(3,4,3)}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.png
Cells {3,4} Uniform polyhedron-34-t0.png
Faces {3}
Edge figure {6}
Vertex figure {4,6} H2 tiling 246-4.png
{(4,3,4)} Uniform tiling 443-t1.png
Dual {6,4,3}
Coxeter group [3,4,6]
[3,((4,3,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-6 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,6}. It has six octahedra, {3,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many octahedra existing around each vertex in an order-6 square tiling vertex arrangement.

Hyperbolic honeycomb 3-4-6 poincare cc.png
Poincaré disk model
(cell centered)
H3 346 UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(4,3,4)}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.png, with alternating types or colors of octahedral cells. In Coxeter notation the half symmetry is [3,4,6,1+] = [3,((4,3,4))].

Order-7 octahedral honeycomb[]

Order-7 octahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,4,7}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
Cells {3,4} Uniform polyhedron-34-t0.png
Faces {3}
Edge figure {7}
Vertex figure {4,7} H2 tiling 247-4.png
Dual {7,4,3}
Coxeter group [3,4,7]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,7}. It has seven octahedra, {3,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many octahedra existing around each vertex in an order-7 square tiling vertex arrangement.

Hyperbolic honeycomb 3-4-7 poincare cc.png
Poincaré disk model
(cell centered)
H3 347 UHS plane at infinity.png
Ideal surface

Order-8 octahedral honeycomb[]

Order-8 octahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,4,8}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
Cells {3,4} Uniform polyhedron-34-t0.png
Faces {3}
Edge figure {8}
Vertex figure {4,8} H2 tiling 248-4.png
Dual {8,4,3}
Coxeter group [3,4,8]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,8}. It has eight octahedra, {3,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many octahedra existing around each vertex in an order-8 square tiling vertex arrangement.

Hyperbolic honeycomb 3-4-8 poincare cc.png
Poincaré disk model
(cell centered)

Infinite-order octahedral honeycomb[]

Infinite-order octahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,4,∞}
{3,(4,∞,4)}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png
Cells {3,4} Uniform polyhedron-34-t0.png
Faces {3}
Edge figure {∞}
Vertex figure {4,∞} H2 tiling 24i-4.png
{(4,∞,4)} H2 tiling 44i-4.png
Dual {∞,4,3}
Coxeter group [∞,4,3]
[3,((4,∞,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the infinite-order octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,∞}. It has infinitely many octahedra, {3,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many octahedra existing around each vertex in an infinite-order square tiling vertex arrangement.

Hyperbolic honeycomb 3-4-i poincare cc.png
Poincaré disk model
(cell centered)
H3 34i UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(4,∞,4)}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of octahedral cells. In Coxeter notation the half symmetry is [3,4,∞,1+] = [3,((4,∞,4))].

See also[]

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References[]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[]

Retrieved from ""