Pentaerythritol

From Wikipedia, the free encyclopedia
Pentaerythritol
Pentaerythritol.svg
Pentaerythritol-3D-balls.png
Names
Preferred IUPAC name
2,2-Bis(hydroxymethyl)propane-1,3-diol[1]
Other names
2,2-Bis(hydroxymethyl)1,3-propanediol
Pentaerythritol[1]
Hercules P 6
Monopentaerythritol
Tetramethylolmethane
THME
PETP
Pentaerythrite
Pentek
Hercules Aqualon improved technical PE-200
Identifiers
  • 115-77-5 checkY
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.732 Edit this at Wikidata
EC Number
  • 204-104-9
KEGG
RTECS number
  • RZ2490000
UNII
Properties
C5H12O4
Molar mass 136.15
Appearance white solid
Density 1.396g/cm3
Melting point 260.5 °C (500.9 °F; 533.6 K)
Boiling point 276 °C (529 °F; 549 K) at 30 mmHg
5.6 g/100 mL at 15 °C
Solubility Soluble in methanol, ethanol, glycerol, ethylene glycol, formamide; insoluble in acetone, benzene, paraffin, ether, CCl4
Vapor pressure 0.00000008 mmHg (20°C)[2]
Hazards
Flash point 200.1 °C (392.2 °F; 473.2 K)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3 (total) TWA 5 mg/m3 (resp)[2]
REL (Recommended)
TWA 10 mg/m3 (total) TWA 5 mg/m3 (resp)[2]
IDLH (Immediate danger)
N.D.[2]
Related compounds
Related compounds
Neopentane, Neopentyl alcohol, Neopentyl glycol, Trimethylolethane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  (what is checkY☒N ?)
Infobox references

Pentaerythritol is an organic compound with the formula C(CH2OH)4. Classified as a polyol, it is a white solid. Pentaerythritol is a building block for the synthesis and production of explosives, plastics, paints, appliances, cosmetics, and many other commercial products.

The word pentaerythritol is a blend of penta- in reference to its 5 carbon atoms and erythritol, which also possesses 4 alcohol groups.

Synthesis[]

Pentaerythritol was first reported in 1891 by German chemist Bernhard Tollens and his student P. Wigand.[3] It may be prepared via a base-catalyzed multiple-addition reaction between acetaldehyde and 3 equivalents of formaldehyde to give pentaerythrose (CAS: 3818-32-4), followed by a Cannizzaro reaction with a fourth equivalent of formaldehyde to give the final product.[4]

Pentaerythrit.svg

Uses[]

Pentaerythritol is a versatile building block for the preparation of many polyfunctionalized compounds. Derivatives of pentaerythritol are components of alkyd resins, varnishes, polyvinyl chloride stabilizers, tall oil esters, antioxidants (e.g. Anox 20). It can be found in transformer oil, plastics, paints, cosmetics, and many other applications.[5][6]

Polyester derivatives[]

Pentaerythritol is a precursor to esters of the type C(CH2OX)4. One such derivative is pentaerythritol tetranitrate (PETN), a vasodilator and explosive. The trinitrate derivative is called (Petrin). The tetraacetate is called (PAG). The polymer cross-linking agent pentaerythritol tetraacrylate.[7]

Fire retardants[]

Pentaerythritol is used as a fire retardant, such as in plastics.[citation needed] It produces a thick carbon barrier upon heating, protecting the surface substrate.

Pentaerythritol is one of the most common main active components in intumescent paints and coatings. It acts as a carbon donor and together with an acid donor, most commonly ammonium polyphosphate (APP), and a blowing agent, most commonly melamine.

References[]

  1. ^ Jump up to: a b Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 691. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  2. ^ Jump up to: a b c d NIOSH Pocket Guide to Chemical Hazards. "#0485". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Tollens, B.; Wigand, P. (1891). "Ueber den Penta-Erythrit, einen aus Formaldehyd und Acetaldehyd synthetisch hergestellten vierwerthigen Alkohol (On pentaerythritol, a quaternary alcohol synthetically produced from formaldehyde and acetaldehyde)". Justus Liebig's Annalen der Chemie (in German). 265 (3): 316–340. doi:10.1002/jlac.18912650303.
  4. ^ Schurink, H. B. J. (1925). "Pentaerythritol". Organic Syntheses. 4: 53. doi:10.15227/orgsyn.004.0053.; Collective Volume, 1, p. 425
  5. ^ NPCS Board of Consultants & Engineers (2016). The Complete Book on Adhesives, Glues & Resins Technology (with Process & Formulations) 2nd Revised Edition.
  6. ^ NIIR Board of Engineers & Consultants (2005). Synthetic Resins Technology Handbook.
  7. ^ S. F. Marrian (1948). "The Chemical Reactions of Pentaerythritol and its Derivatives". Chemical Reviews. 43 (1): 149–202. doi:10.1021/cr60134a004. PMID 18876970.
Retrieved from ""