Phyllomedusa sauvagii

From Wikipedia, the free encyclopedia

Phyllomedusa sauvagii
Waxy.tree.frog.arp.jpg

Least Concern (IUCN 3.1)[1]
Scientific classification edit
Kingdom: Animalia
Phylum: Chordata
Class: Amphibia
Order: Anura
Family: Phyllomedusidae
Genus: Phyllomedusa
Species:
P. sauvagii
Binomial name
Phyllomedusa sauvagii
Boulenger, 1882

Phyllomedusa sauvagii, commonly known as the waxy monkey tree frog,[2] is a species of frog in the family Phyllomedusidae. It is native to South America, where it occurs in Argentina, Bolivia, Paraguay and Brazil.[1] This species is arboreal, living in the vegetation of the Gran Chaco.

Reproduction and embryo development[]

Phyllomedusa sauvagii breeds during the rainy season, which typically lasts from October until March. Mating does not occur continuously throughout the season, only during or shortly after periods of heavy rainfall.[3] Males will find a shrub or tree near or in a body of water where they will begin to vocalize to attract females. They are amplectant maters and, as such, breeding pairs create their nest of eggs together. The pair will move towards their oviposition site, usually on a leaf overhanging a body of water, where the male will assist the female in laying her eggs while simultaneously fertilizing them.[3]

A critical aspect of the reproductive success of P. sauvagii is their oviposition site. Their eggs are highly permeable to water and will desiccate in nesting sites that are too arid or exposed to the sun. Its nest must also be on a leaf on a branch suspended over fresh water, so the hatching tadpoles drop into the water.[4] They have been shown to non-randomly select sites in favor of larger leaf size and overhang of standing water.[5] To avoid desiccation of eggs, females will lay empty gelatinous capsules in a manner so that they surround the real eggs. These capsules provide extra fluid for the development of embryos and help to keep the eggs from drying out. they also have adherent properties which assists the breeding pair in wrapping their nests with the leaf that they are laid on.[6] P. sauvagii may also use more than one leaf to effectively wrap their clutch of eggs.[5]

Eggs are large and yolk-heavy by anuran standards. Embryo development usually lasts between six and nine days, after which the embryos hatch spontaneously and drop into the water. Upon hatching, tadpoles are equipped with relatively large external gills, an oral disc with multiple lines of keratinized teeth, and a tail that composes about two thirds of their body length. P. sauvagii embryos may exceed twenty millimeters in length upon hatching.[7]

Thermoregulation and water conservation[]

A group of mankey tree frogs in a bush .jpg

Phyllomedusa sauvagii can tolerate a wide range of body temperatures between about 20 and 40°C.[8] The upper limit of their body temperature is about 40°C, which is higher than most frogs can withstand. This is advantageous in that the frog does not need to expend water for thermoregulation unless ambient temperatures exceed this limit. P. sauvagii is able to endure temperatures as low as 20°C, and may prefer to be between 22 and 26°C.[8]

They have shown to be able modulate their body temperature through control of evaporative water loss.[8] As in other species in the family of leaf frogs, it has physiological and behavioral adaptations to limit water loss, reducing it through the skin by lipid secretions and excretion of uric acid (uricotelism), as well as entering diurnal torpor.[9] Lipid secretions are produced in a special type of cutaneous gland which is densely packed along the entire surface of the frogs body. If disturbed, frogs will use their legs to engage in wiping behavior, possibly as a grooming mechanism or to ensure their bodies are appropriately coated in secretions.[9] This method of retaining water is so effective that their rate of evaporative water loss is only about 5-10% of that of other anurans and comparable to that of lizards.[10] P. sauvagii is nocturnal, and spends most of the day resting on a perch. When perched, the frogs may enter a state of torpor which may help reduce respiratory evaporative water loss.[9]

The frogs generate many different pharmacologically active peptides as part of the defensive secretions covering their skin. Several of these peptides have found scientific uses as research ligands, including the opioid peptide dermorphin.[2]

References[]

  1. ^ a b Aquino, Lucy; Colli, Guarino; Reichle, Steffen; Silvano, Débora; di Tada, Ismael; Lavilla, Esteban (2004). "Phyllomedusa sauvagii". IUCN Red List of Threatened Species. 2004: e.T55863A11382074. doi:10.2305/IUCN.UK.2004.RLTS.T55863A11382074.en. Retrieved 14 July 2021.
  2. ^ a b Bogdanich, Walt; Ruiz, Rebecca R. (19 June 2012). "Turning to Frogs for Illegal Aid in Horse Races". The New York Times.
  3. ^ a b Rodrigues, Domingos J.; Uetanabaro, Masao; Lopes, Frederico S. (October 2007). "Breeding biology of Phyllomedusa azurea Cope, 1862 and P. sauvagii Boulenger, 1882 (Anura) from the Cerrado, Central Brazil". Journal of Natural History. 41 (29–32): 1841–1851. doi:10.1080/00222930701507220. S2CID 86303839.
  4. ^ Frazer, J.F.D (1973). Amphibians. Wykeham. p. 75. ISBN 978-0-85109-330-7. OCLC 901618333.
  5. ^ a b García, Cecilia G.; Lescano, Julián N.; Leynaud, Gerardo C. (August 2013). "Oviposition-site selection by Phyllomedusa sauvagii (Anura: Hylidae): An arboreal nester inhabiting arid environments". Acta Oecologica. 51: 62–65. Bibcode:2013AcO....51...62G. doi:10.1016/j.actao.2013.06.001.
  6. ^ Agar, W. E. (21 August 2009). "The Nesting Habits of the Tree-Frog Phyllomedusa sauragii". Proceedings of the Zoological Society of London. 79 (4): 893–897. doi:10.1111/j.1469-7998.1910.tb06980.x.
  7. ^ Salica, María José; Haad, María Belén; Vera Candioti, María Florencia; Faivovich, Julián (August 2011). "Early development of two species of Phyllomedusa (Anura: Phyllomedusinae)". Salamandra. 47 (3): 144–154. hdl:11336/68988.
  8. ^ a b c Shoemaker, Vaughan H.; McClanahan, Lon L.; Withers, Philip C.; Hillman, Stanley S.; Drewes, Robert C. (May 1987). "Thermoregulatory Response to Heat in the Waterproof Frogs Phyllomedusa and Chiromantis". Physiological Zoology. 60 (3): 365–372. doi:10.1086/physzool.60.3.30162290. S2CID 88106253.
  9. ^ a b c Blaylock, Lynn A.; Ruibal, Rodolfo; Platt-Aloia, Kathryn (17 May 1976). "Skin Structure and Wiping Behavior of Phyllomedusine Frogs". Copeia. 1976 (2): 283. doi:10.2307/1443948. JSTOR 1443948.
  10. ^ Shoemaker, V. H.; Balding, D.; Ruibal, R.; McClanahan, L. L. (3 March 1972). "Uricotelism and Low Evaporative Water Loss in a South American Frog". Science. 175 (4025): 1018–1020. Bibcode:1972Sci...175.1018S. doi:10.1126/science.175.4025.1018. PMID 5009394. S2CID 34499871.

External links[]

Retrieved from ""