Rare-earth barium copper oxide

From Wikipedia, the free encyclopedia
Unit cell of YBCO

Rare-earth barium copper oxide (also referred to as ReBCO[1]) is a family of chemical compounds known for exhibiting high temperature superconductivity.[2] ReBCO superconductors have the potential to sustain stronger magnetic fields than other superconductor materials.

Due to their stronger magnetic field and relatively high superconducting critical temperature, these materials have been proposed for future magnetic confinement fusion reactors such as the ARC reactor, allowing a more compact and economical construction,[3] and for new generation magnets to use at particle accelerators like LHC at CERN.[4][5]

YBCO critical current (KA/cm2) vs absolute temperature (K), at different magnetic field (T).[6]

The most famous of these is yttrium barium copper oxide, YBa2Cu3O7-x (or Y123), the first superconductor found with a critical temperature above the boiling point of liquid nitrogen.[7] Its molar ratio is 1 to 2 to 3 for yttrium, barium, and copper and it has a unit cell consisting of subunits, which is the typical structure of perovskites,. In particular, the subunits are three, overlapping and containing an yttrium atom at the center of the middle one and a barium atom at the center of the remaining ones. Therefore, yttrium and barium are stacked according to the sequence [Ba-Y-Ba], along an axis conventionally denoted by c, (the vertical direction in the figure on the right).

The resulting cell has an orthorhombic structure, unlike other superconducting cuprates which generally have a tetragonal structure. All the corner sites of the unit cell are occupied by copper, which has two different coordinates, Cu(1) and Cu(2), with respect to oxygen. There are four possible crystallographic sites for oxygen: O(1), O(2), O(3), and O(4).[8]

Any rare-earth element can be used in a ReBCO; popular choices include yttrium (YBCO), lanthanum (LBCO), samarium (Sm123),[9] neodymium (Nd123 and Nd422),[10] gadolinium (Gd123) and europium (Eu123),[11] where the numbers among parenthesis indicate the molar ratio among rare-earth, barium and copper.

Because this kind of materials are brittle it was difficult to create wires from them. After 2010 industrial manufacturers started to produce tapes,[12] with different layers encapsulating the ReBCO material[13] and opening the way to commercial uses.

In September 2021 Commonwealth Fusion Systems (CFS) created a test magnet with ReBCO wires in which flowed a current of 40,000 amperes, with a magnetic field of 20 tesla at 20 K.[14][15]

See also[]

References[]

  1. ^ Jha, Alok K.; Matsumoto, Kaname (2019). "Superconductive REBCO Thin Films and Their Nanocomposites: The Role of Rare-Earth Oxides in Promoting Sustainable Energy". Frontiers in Physics. 7: 82. doi:10.3389/fphy.2019.00082. ISSN 2296-424X.
  2. ^ Fisk, Z.; Thompson, J.D.; Zirngiebl, E.; Smith, J.L.; Cheong, S-W. (June 1987). "Superconductivity of rare earth-barium-copper oxides" (Submitted manuscript). Solid State Communications. 62 (11): 743–744. doi:10.1016/0038-1098(87)90038-X.
  3. ^ "New superconductors raise hope for fast development of compact fusion reactor". The Engineer. Retrieved 21 June 2020.
  4. ^ "To 20 Tesla and beyond: the high-temperature superconductors". CERN. Retrieved 2021-11-05.
  5. ^ van Nugteren, J.; Kirby, G.; Murtomäki, Jaakko Samuel. G. de Rijk, L. Rossi and A. Stenvall. "Towards REBCO 20T+ Dipoles for Accelerators". ResearchGate.
  6. ^ Koblischka-Veneva, Anjela; Koblischka, Michael R.; Berger, Kévin; Nouailhetas, Quentin; Douine, Bruno; Muralidhar, Miryala; Murakami, Masato (August 2019). "Comparison of Temperature and Field Dependencies of the Critical Current Densities of Bulk YBCO, MgB₂, and Iron-Based Superconductors". IEEE Transactions on Applied Superconductivity. 29 (5): 1–5. doi:10.1109/TASC.2019.2900932. ISSN 1558-2515.
  7. ^ Wu, M. K. J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, et C. W. Chu. "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure" (PDF). Physical Review Letters. 58 (9): 908–910.
  8. ^ Hazen, R. M.; Finger, L. W.; Angel, R. J.; Prewitt, C. T.; Ross, N. L.; Mao, H. K.; Hadidiacos, C. G.; Hor, P. H.; Meng, R. L.; Chu, C. W. (1987-05-01). "Crystallographic description of phases in the Y-Ba-Cu-O superconductor". Physical Review B. 35 (13): 7238–7241. doi:10.1103/PhysRevB.35.7238.
  9. ^ Kasuga, K.; Muralidhar, M.; Diko, P. (2016-01-01). "SEM and SEM by EDX Analysis of Air-Processed SmBa2Cu3Oy". Physics Procedia. 81: 41–44. doi:10.1016/j.phpro.2016.04.018. Retrieved 2021-10-12.
  10. ^ Hari Babu, N.; Lo, W.; Cardwell, D. A. (1999-11-08). "The irreversibility behavior of NdBaCuO fabricated by top-seeded melt processing". Applied Physics Letters. 75 (19): 2981–2983. doi:10.1063/1.125208. Retrieved 2021-10-12.
  11. ^ Murakami, M.; Sakai, N.; Higuchi, T.; Yoo, S. I. "Melt-processed light rare earth element - Ba - Cu - O". Superconductor Science and Technology. 9 (12). Retrieved 2021-10-12.
  12. ^ "ReBCO High Temperature Superconducting Tape". www.fusionenergybase.com. Retrieved 2021-11-05.
  13. ^ Barth, Christian; Mondonico, Giorgio. "Electro-mechanical properties of ReBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T". ResearchGate.
  14. ^ "Eni and Commonwealth Fusion Systems Abstract". www.eni.com. Retrieved 2021-12-02.
  15. ^ "MIT ramps 10-ton magnet up to 20 tesla in proof of concept for commercial fusion -- ANS / Nuclear Newswire". www.ans.org. Retrieved 2021-12-02.


Retrieved from ""