Tony Minson

From Wikipedia, the free encyclopedia
Tony Minson
Born (1944-02-08) 8 February 1944 (age 77)[1]
Alma materUniversity of Birmingham (BSc)
Australian National University (PhD)
AwardsFMedSci (2002)
Scientific career
InstitutionsUniversity of Cambridge
University of Birmingham
Australian National University
ThesisStudies of the biosynthesis of histidine in Neurospora crassa (1968)
Doctoral studentsTony Kouzarides[2]
Websitewww.wolfson.cam.ac.uk/people/professor-anthony-minson

Anthony (Tony) Charles Minson, PhD, FMedSci (born 8 February 1944)[3] is a British virologist known for his work on the biology of herpesviruses,[4][5][6][7][8] and a university administrator. He was the Senior Pro-Vice-Chancellor of the University of Cambridge from 2003 to 2009. He is emeritus professor of virology at the university's Department of Pathology and an emeritus fellow of Wolfson College.[9]

Education and career[]

Born in Ilford, Essex, Minson was educated at Ilford High School[1] and went on to study microbiology from the University of Birmingham in 1965. His postgraduate work was at the Research School of Biological Sciences of Australian National University, researching fungal genetics with E. H. Creaser.[10][11][12] He gained his PhD in 1968 for work on the biosynthesis of histidine in Neurospora crassa.[13]

By the early 1970s, Minson had returned to the University of Birmingham.[14] In 1976, he took up a position as Senior Research Associate at the University of Cambridge. In the mid-1980s, he became head of the Division of Virology and, in 1991, was appointed professor of virology in the Department of Pathology.[10] He is a fellow of Wolfson College.[11]

Research[]

Since moving to Cambridge, Minson's research has focused on animal viruses, particularly those of the herpesvirus family, including herpes simplex virus (HSV) and human cytomegalovirus.[15] These large and complex enveloped DNA viruses commonly infect humans, causing a lifelong latent infection. Conditions associated with HSV include cold sores and genital herpes, and both HSV and cytomegalovirus can be life-threatening in people who are immunodeficient. Much of Minson's research has investigated herpesvirus replication and life cycle, and viral pathogenesis and the immune response. His work has contributed to understanding the processes by which HSV fuses with the cell membrane and acquires its envelope.[16][17] As of 2013, his research focuses on herpesvirus entry, in particular how the viral membrane proteins cooperate to induce fusion, as well as assembly, in particular of the viral membrane proteins.[18]

Minson has also worked in collaboration with Margaret Stanley on another DNA virus, human papillomavirus, which is associated with cervical cancer.[19] His research in the early 1970s was in the field of plant viruses, including tobacco rattle virus and tobacco necrosis virus, in collaboration with Graham Darby and others.[14][20] Leszek Borysiewicz and Geoffrey L. Smith are among his other research collaborators,[15][21] and notable students have included Tony Kouzarides.[2][22]

Vaccines[]

In the early 1990s, Minson's group was one of several investigating a novel method of attenuating viruses for use in live vaccines. One or more of the genes absolutely required for replication is deleted and the virus is grown in a cell line engineered to express these gene products. The resulting virus can infect normal human cells, but should be safe because it cannot replicate in them.[23][24][25] Such replication-impaired viruses unite many of the advantages of both live and killed virus vaccines, and are much less likely to revert to a more-virulent form than earlier methods of attenuation.[25][26]

Minson and co-workers pioneered a modification of this approach in which the disabled virus is restricted to a single cycle of replication. Using HSV-2, which causes genital herpes, they disabled the virus by deleting the viral gene encoding the membrane protein glycoprotein H (gH). This product is not required until after the viral assembly process, which means that the disabled virus can undergo a single round of replication in normal human cells, but the progeny virus cannot infect new cells. Minson's group called the resulting virus a "disabled infectious single cycle" (DISC) virus; similarly disabled viruses are also termed "single-cycle" viruses. Their work with DISC HSV-2 led to a series of vaccine candidates, which were developed by Cantab Pharmaceuticals.[23][24][25] The DISC HSV-2 vaccine was promising in animal models and early clinical trials, appearing safe and well tolerated, and eliciting appropriate immune responses.[24][25][27][28] However, a large phase II trial of the agent as a therapeutic vaccine in people with genital herpes failed to demonstrate any benefit,[24][27] and further development has concentrated on the DISC HSV-2 vaccine's potential to prevent infection.[27][29] The single-cycle strategy can be used to generate live vaccines against other viruses, and such a vaccine has recently been successfully developed for bluetongue virus of sheep.[30] Single-cycle viruses are also widely used as vaccine vectors, carrying genes from other viruses.[31]

Detection[]

In the early 2000s, a collaboration between Minson and Matthew Cooper's group from the University of Cambridge's chemistry department pioneered a novel acoustic technique for detecting viruses. The technique allows a single virus particle to be detected in a sample, and has the potential for use as a quick yet sensitive monitor of viral infection.[32][33] The researchers co-founded the company Akubio in 2001 to exploit the discovery; the company developed biosensors for detecting bacteria and viruses. It was acquired by Inverness Medical Innovations in 2008.[34]

Taxonomy[]

Minson is a long-term member of the International Committee on Taxonomy of Viruses (ICTV) Study Group that defines herpesvirus taxonomy.[35][36] In 2008, as a result of the group's deliberations on research into herpesvirus genetics, the ICTV promoted the herpesvirus family to an order, and split it into three families.[36]

Science and university administration[]

Senate House, centre of the university's government, lit up for the 800th anniversary

Minson has been highly active in university administration. In 2001–3, he chaired the School of Biological Sciences, one of the six schools of the University of Cambridge.[11] In 2003, he was appointed Pro-Vice-Chancellor of the university, in succession to Malcolm Grant. Minson was the first, and most senior, of a new team of five Pro-Vice-Chancellors, holding particular responsibility for planning and resources.[10][37][38] He said of his role: We have a duty to maintain the university's values of scientific enquiry and scholarship whilst embracing the principles of sustainable, achievable reform.[38] He served in this position until 2009, the university's 800th anniversary year.[37] Soon after his appointment, he was thrown into controversy over his strong support for a proposed new primate research centre attached to the university, which was the target of a campaign by animal rights activists.[39] The plans were later abandoned because of escalating costs, due in part to the activism.[40][41] In 2005, the university launched a major fund-raising campaign to mark the 800th anniversary; the £1 billion target was achieved ahead of schedule in 2010.[42]

Minson has also served on the steering committee of the multidisciplinary Cambridge Infectious Disease group, launched in 2004.[43][44] In 2010–12, he chaired the syndicate governing Cambridge University Press.[45] Outside the university, he served on the council of the Society for General Microbiology in 1990–94 and 2003–7, and (as of 2012) is the reviews editor of their journal, the Journal of General Virology.[46][47] He was an officer of the Biotechnology and Biological Sciences Research Council's Institute for Animal Health (now the Pirbright Institute) in 1997–2003.[48] As of 2013, Minson is on the board of the Lister Institute of Preventive Medicine and is a trustee of the Animal Health Trust.[49][50]

He has drawn attention to the cost of bureaucracy imposed on researchers by government agencies, writing in 2004:

To be against improvement in standards is like being against motherhood, but we should be alert to the dangers of universal codes of practice imposed for administrative tidiness. The fact is that the great scientific leaps of the past 50 years have not been made in laboratories using validated standard operating procedures, well defined line-management systems, and 6-monthly milestones.[51]

Awards and honours[]

Minson was elected a fellow of the Academy of Medical Sciences in 2002.[52] He was elected an honorary member of the Society for General Microbiology in 2011.[46]

References[]

  1. ^ Jump up to: a b "MINSON, Prof. Anthony Charles". Who's Who 2013, A & C Black, an imprint of Bloomsbury Publishing plc, 2013; online edn, Oxford University Press.(subscription required)
  2. ^ Jump up to: a b Laursen, L. (2008). "Creativity and Persistence Overcome Failure: Tony Kouzarides tells the story of his early career as a comedy of errors". Science. doi:10.1126/science.caredit.a0800097.
  3. ^ Companies in the UK: Professor Anthony Charles Minson (accessed 9 January 2013)
  4. ^ Parry, C.; Bell, S.; Minson, T.; Browne, H. (2005). "Herpes simplex virus type 1 glycoprotein H binds to v 3 integrins". Journal of General Virology. 86 (Pt 1): 7–10. doi:10.1099/vir.0.80567-0. PMID 15604426.
  5. ^ Skepper, J. N.; Whiteley, A.; Browne, H.; Minson, A. (2001). "Herpes Simplex Virus Nucleocapsids Mature to Progeny Virions by an Envelopment Deenvelopment Reenvelopment Pathway". Journal of Virology. 75 (12): 5697–5702. doi:10.1128/JVI.75.12.5697-5702.2001. PMC 114284. PMID 11356979.
  6. ^ Turner, A.; Bruun, B.; Minson, T.; Browne, H. (1998). "Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system". Journal of Virology. 72 (1): 873–875. doi:10.1128/JVI.72.1.873-875.1998. PMC 109452. PMID 9420303.
  7. ^ McLean, C. S.; Erturk, M.; Jennings, R.; Challanain, D. N.; Minson, A. C.; Duncan, I.; Boursnell, M. E.; Inglis, S. C. (1994). "Protective vaccination against primary and recurrent disease caused by herpes simplex virus (HSV) type 2 using a genetically disabled HSV-1". The Journal of Infectious Diseases. 170 (5): 1100–1109. doi:10.1093/infdis/170.5.1100. PMID 7963701.
  8. ^ Forrester, A.; Farrell, H.; Wilkinson, G.; Kaye, J.; Davis-Poynter, N.; Minson, T. (1992). "Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted". Journal of Virology. 66 (1): 341–348. doi:10.1128/JVI.66.1.341-348.1992. PMC 238293. PMID 1309250.
  9. ^ Mitchinson, M. J. Arno J, Edwards PAW, LePage RWF, Minson AC (1996). Essentials of pathology. Oxford: Blackwell Science. ISBN 0-632-02944-7.CS1 maint: multiple names: authors list (link)
  10. ^ Jump up to: a b c University of Cambridge: News and Events: New Pro-Vice-Chancellor appointed (16 June 2003) (accessed 5 January 2009)
  11. ^ Jump up to: a b c Wolfson College, Cambridge: Professor Anthony Minson (accessed 7 January 2013)
  12. ^ Minson, A. C.; Creaser, E. H. (1969). "Purification of a trifunctional enzyme, catalysing three steps of the histidine pathway, from Neurospora crassa". The Biochemical Journal. 114 (1): 49–56. doi:10.1042/bj1140049. PMC 1184794. PMID 4309307.
  13. ^ Minson, Anthony Charles (1968). Studies of the biosynthesis of histidine in Neurospora crassa (PhD thesis). Australian National University.
  14. ^ Jump up to: a b Darby, G.; Minson, A. C. (1973). "The Structure of Tobacco Rattle Virus Ribonucleic Acids: Common Nucleotide Sequences in the RNA Species". Journal of General Virology. 21 (2): 285–295. doi:10.1099/0022-1317-21-2-285.
  15. ^ Jump up to: a b Browne, H.; Smith, G.; Beck, S.; Minson, T. (1990). "A complex between the MHC class I homologue encoded by human cytomegalovirus and β2 microglobulin". Nature. 347 (6295): 770–772. doi:10.1038/347770a0. PMID 2172831.
  16. ^ rae2008: UOA 3 - Infection and Immunology: University of Cambridge: RA5a: Research environment and esteem (accessed 14 January 2013)
  17. ^ Herpes simplex virus Research: HSV Replication Archived 2012-12-12 at archive.today (accessed 9 January 2013)
  18. ^ University of Cambridge: Department of Pathology: Professor Tony Minson & Dr Helena Browne Archived 2009-02-21 at the Wayback Machine (accessed 10 January 2013)
  19. ^ Stanley, M. A.; Browne, H. M.; Appleby, M.; Minson, A. C. (1989). "Properties of a non-tumorigenic human cervical keratinocyte cell line". International Journal of Cancer. 43 (4): 672–676. doi:10.1002/ijc.2910430422. PMID 2467886.
  20. ^ Shoulder, A.; Darby, G.; Minson, T. (1974). "RNA—RNA hybridisation using 125I-labelled RNA from tobacco necrosis virus and its satellite". Nature. 251 (5477): 733–735. doi:10.1038/251733a0. PMID 4427674.
  21. ^ Bell, S.; Cranage, M.; Borysiewicz, L.; Minson, T. (1990). "Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1". Journal of Virology. 64 (5): 2181–2186. doi:10.1128/JVI.64.5.2181-2186.1990. PMC 249377. PMID 2157879.
  22. ^ Cranage, M. P.; Kouzarides, T.; Bankier, A. T.; Satchwell, S.; Weston, K.; Tomlinson, P.; Barrell, B.; Hart, H.; Bell, S. E.; Minson, A. C. (1986). "Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus". The EMBO Journal. 5 (11): 3057–3063. doi:10.1002/j.1460-2075.1986.tb04606.x. PMC 1167261. PMID 3024973.
  23. ^ Jump up to: a b Stanberry LR. Understanding Herpes: A Concise Overview of Recent Advances and New Resources, p. 98 (2nd edn) (University Press of Mississippi; 2006) (Googlebooks)
  24. ^ Jump up to: a b c d Koelle, D. M.; Corey, L. (2003). "Recent progress in herpes simplex virus immunobiology and vaccine research". Clinical Microbiology Reviews. 16 (1): 96–113. doi:10.1128/CMR.16.1.96-113.2003. PMC 145296. PMID 12525427.
  25. ^ Jump up to: a b c d Dudek, T.; Knipe, D. M. (2006). "Replication-defective viruses as vaccines and vaccine vectors". Virology. 344 (1): 230–239. doi:10.1016/j.virol.2005.09.020. PMID 16364753.
  26. ^ Gregoriadis G, McCormack B, Allison AC (eds). Vaccine Design: The Role of Cytokine Networks, pp. 120–122, (Plenum Press; 1997) (ISBN 0306458187)
  27. ^ Jump up to: a b c WHO: Sexually Transmitted Diseases: Herpes simplex type 2 (accessed 10 January 2013)
  28. ^ Whitley, R. J.; Roizman, B. (2002). "Herpes simplex viruses: Is a vaccine tenable?". Journal of Clinical Investigation. 110 (2): 145–151. doi:10.1172/JCI16126. PMC 151069. PMID 12122103.
  29. ^ Gross G, Tyring SK (eds) Sexually Transmitted Infections and Sexually Transmitted Diseases, p. 698 (Springer; 2011) (ISBN 978-3-642-14662-6
  30. ^ Matsuo, E.; Celma, C. C. P.; Boyce, M.; Viarouge, C.; Sailleau, C.; Dubois, E.; Bréard, E.; Thiéry, R.; Zientara, S.; Roy, P. (2011). "Generation of Replication-Defective Virus-Based Vaccines That Confer Full Protection in Sheep against Virulent Bluetongue Virus Challenge". Journal of Virology. 85 (19): 10213–10221. doi:10.1128/JVI.05412-11. PMC 3196398. PMID 21795358.
  31. ^ Gomme, E. A.; Faul, E. J.; Flomenberg, P.; McGettigan, J. P.; Schnell, M. J. (2010). "Characterization of a Single-Cycle Rabies Virus-Based Vaccine Vector". Journal of Virology. 84 (6): 2820–2831. doi:10.1128/JVI.01870-09. PMC 2826042. PMID 20053743.
  32. ^ Cooper, M. A.; Dultsev, F. N.; Minson, T.; Ostanin, V. P.; Abell, C.; Klenerman, D. (2001). "Direct and sensitive detection of a human virus by rupture event scanning". Nature Biotechnology. 19 (9): 833–837. doi:10.1038/nbt0901-833. PMID 11533641.
  33. ^ Anon (2001). "Direct and sensitive detection of a human virus by rupture event scanning: researchers hope to hear HIV, hepatitis and 'flu". Nature. doi:10.1038/news010906-1.
  34. ^ Vargas L. Recycled Cambridge biosensor technology attracts millions in investment Business Weekly (27 August 2008) (accessed 9 January 2013)
  35. ^ Roizmann, B.; Desrosiers, R. C.; Fleckenstein, B.; Lopez, C.; Minson, A. C.; Studdert, M. J. (1992). "The familyHerpesviridae: An update". Archives of Virology. 123 (3–4): 425–449. doi:10.1007/BF01317276. PMID 1562239.
  36. ^ Jump up to: a b Davison, A. J.; Eberle, R.; Ehlers, B.; Hayward, G. S.; McGeoch, D. J.; Minson, A. C.; Pellett, P. E.; Roizman, B.; Studdert, M. J.; Thiry, E. (2008). "The order Herpesvirales". Archives of Virology. 154 (1): 171–177. doi:10.1007/s00705-008-0278-4. PMC 3552636. PMID 19066710.
  37. ^ Jump up to: a b The Reporter: Office of Pro-Vice-Chancellor (Planning and Resources): Notice (accessed 9 January 2013)
  38. ^ Jump up to: a b Guardian: Cambridge appoints new pro-vice-chancellor (accessed 9 January 2013)
  39. ^ Times Higher Education: In the news: Tony Minson (accessed 9 January 2013)
  40. ^ Anon (2004). "A defeat for primate research". Nature Neuroscience. 7 (5): 413. doi:10.1038/nn0504-413. PMID 15114345.
  41. ^ Guardian: Cambridge abandons plans for primate lab (accessed 9 January 2013
  42. ^ Cambridge University Development Office: While the 800th Anniversary Campaign has been completed, Cambridge's fundraising continues (accessed 10 January 2013)
  43. ^ "Cambridge Infectious Disease: About Cambridge Infectious Disease". Archived from the original on February 28, 2009. Retrieved 2009-01-05.CS1 maint: bot: original URL status unknown (link) (accessed 9 January 2013)
  44. ^ Cambridge Infectious Diseases: About Us (accessed 10 January 2013)
  45. ^ Cambridge University Press: Annual Report for the year ended 30 April 2012[permanent dead link] (accessed 7 January 2013)
  46. ^ Jump up to: a b Society for General Microbiology: Membership: Honorary Archived 2012-09-05 at the Wayback Machine (accessed 9 January 2013)
  47. ^ Journal of General Virology: JGV Editors 2012 Archived 2013-04-15 at archive.today (accessed 9 January 2013)
  48. ^ Open Corporates: The Pirbright Institute (accessed 9 January 2013)
  49. ^ The Lister Institute of Preventive Medicine: Organisation Archived 2012-12-14 at the Wayback Machine (accessed 7 January 2013)
  50. ^ Animal Health Trust: Frequently Asked Questions (accessed 8 January 2013)
  51. ^ Minson T. (2004) Comment: Codes of practice in research. Microbiol Today 31: 156 (pdf[permanent dead link])
  52. ^ Academy of Medical Sciences: Fellows (accessed 5 January 2009)

External links[]

Retrieved from ""