Damped oscillation in quantum optics
A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon (s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity.[1] [2] [3] Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.
Mathematical treatment [ ]
A mathematical description of vacuum Rabi oscillation begins with the Jaynes–Cummings model , which describes the interaction between a single mode of a quantized field and a two level system inside an optical cavity . The Hamiltonian for this model in the rotating wave approximation is
H
^
JC
=
ℏ
ω
a
^
†
a
^
+
ℏ
ω
0
σ
^
z
2
+
ℏ
g
(
a
^
σ
^
+
+
a
^
†
σ
^
−
)
{\displaystyle {\hat {H}}_{\text{JC}}=\hbar \omega {\hat {a}}^{\dagger }{\hat {a}}+\hbar \omega _{0}{\frac {{\hat {\sigma }}_{z}}{2}}+\hbar g\left({\hat {a}}{\hat {\sigma }}_{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}\right)}
where
σ
z
^
{\displaystyle {\hat {\sigma _{z}}}}
is the Pauli z spin operator for the two eigenstates
|
e
⟩
{\displaystyle |e\rangle }
and
|
g
⟩
{\displaystyle |g\rangle }
of the isolated two level system separated in energy by
ℏ
ω
0
{\displaystyle \hbar \omega _{0}}
;
σ
^
+
=
|
e
⟩
⟨
g
|
{\displaystyle {\hat {\sigma }}_{+}=|e\rangle \langle g|}
and
σ
^
−
=
|
g
⟩
⟨
e
|
{\displaystyle {\hat {\sigma }}_{-}=|g\rangle \langle e|}
are the raising and lowering operators of the two level system;
a
^
†
{\displaystyle {\hat {a}}^{\dagger }}
and
a
^
{\displaystyle {\hat {a}}}
are the creation and annihilation operators for photons of energy
ℏ
ω
{\displaystyle \hbar \omega }
in the cavity mode; and
g
=
d
⋅
E
^
ℏ
ℏ
ω
2
ϵ
0
V
{\displaystyle g={\frac {\mathbf {d} \cdot {\hat {\mathcal {E}}}}{\hbar }}{\sqrt {\frac {\hbar \omega }{2\epsilon _{0}V}}}}
is the strength of the coupling between the dipole moment
d
{\displaystyle \mathbf {d} }
of the two level system and the cavity mode with volume
V
{\displaystyle V}
and electric field polarized along
E
^
{\displaystyle {\hat {\mathcal {E}}}}
.
[4]
The energy eigenvalues and eigenstates for this model are
E
±
(
n
)
=
ℏ
ω
c
(
n
−
1
2
)
±
ℏ
2
4
g
2
(
n
+
1
)
+
δ
2
=
ℏ
ω
n
±
{\displaystyle E_{\pm }(n)=\hbar \omega _{c}\left(n-{\frac {1}{2}}\right)\pm {\frac {\hbar }{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}=\hbar \omega _{n}^{\pm }}
|
n
,
+
⟩
=
cos
(
θ
n
)
|
g
,
n
+
1
⟩
+
sin
(
θ
n
)
|
e
,
n
⟩
{\displaystyle |n,+\rangle =\cos \left(\theta _{n}\right)|g,n+1\rangle +\sin \left(\theta _{n}\right)|e,n\rangle }
|
n
,
−
⟩
=
sin
(
θ
n
)
|
g
,
n
+
1
⟩
−
cos
(
θ
n
)
|
e
,
n
⟩
{\displaystyle |n,-\rangle =\sin \left(\theta _{n}\right)|g,n+1\rangle -\cos \left(\theta _{n}\right)|e,n\rangle }
where
δ
=
ω
a
−
ω
{\displaystyle \delta =\omega _{a}-\omega }
is the detuning , and the angle
θ
n
{\displaystyle \theta _{n}}
is defined as
θ
n
=
tan
−
1
(
g
n
+
1
δ
)
.
{\displaystyle \theta _{n}=\tan ^{-1}\left({\frac {g{\sqrt {n+1}}}{\delta }}\right).}
Given the eigenstates of the system, the time evolution operator can be written down in the form
e
−
i
H
^
JC
t
/
ℏ
=
∑
|
n
,
±
⟩
∑
|
n
′
,
±
⟩
|
n
,
±
⟩
⟨
n
,
±
|
e
−
i
H
^
JC
t
/
ℏ
|
n
′
,
±
⟩
⟨
n
′
,
±
|
=
e
i
(
ω
−
ω
0
2
)
t
|
g
,
0
⟩
⟨
g
,
0
|
+
∑
n
=
0
∞
e
−
i
ω
n
+
t
(
cos
θ
n
|
g
,
n
+
1
⟩
+
sin
θ
n
|
e
,
n
⟩
)
(
cos
θ
n
⟨
g
,
n
+
1
|
+
sin
θ
n
⟨
e
,
n
|
)
+
∑
n
=
0
∞
e
−
i
ω
n
−
t
(
−
sin
θ
n
|
g
,
n
+
1
⟩
+
cos
θ
n
|
e
,
n
⟩
)
(
−
sin
θ
n
⟨
g
,
n
+
1
|
+
cos
θ
n
⟨
e
,
n
|
)
.
{\displaystyle {\begin{aligned}e^{-i{\hat {H}}_{\text{JC}}t/\hbar }&=\sum _{|n,\pm \rangle }\sum _{|n',\pm \rangle }|n,\pm \rangle \langle n,\pm |e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|n',\pm \rangle \langle n',\pm |\\&=~e^{i(\omega -{\frac {\omega _{0}}{2}})t}|g,0\rangle \langle g,0|\\&~~~+\sum _{n=0}^{\infty }{e^{-i\omega _{n}^{+}t}(\cos {\theta _{n}}|g,n+1\rangle +\sin {\theta _{n}}|e,n\rangle )(\cos {\theta _{n}}\langle g,n+1|+\sin {\theta _{n}}\langle e,n|)}\\&~~~+\sum _{n=0}^{\infty }{e^{-i\omega _{n}^{-}t}(-\sin {\theta _{n}}|g,n+1\rangle +\cos {\theta _{n}}|e,n\rangle )(-\sin {\theta _{n}}\langle g,n+1|+\cos {\theta _{n}}\langle e,n|)}\\\end{aligned}}.}
If the system starts in the state
|
g
,
n
+
1
⟩
{\displaystyle |g,n+1\rangle }
, where the atom is in the ground state of the two level system and there are
n
+
1
{\displaystyle n+1}
photons in the cavity mode, the application of the time evolution operator yields
e
−
i
H
^
JC
t
/
ℏ
|
g
,
n
+
1
⟩
=
(
e
−
i
ω
n
+
t
(
cos
2
(
θ
n
)
|
g
,
n
+
1
⟩
+
sin
θ
n
cos
θ
n
|
e
,
n
⟩
)
+
e
−
i
ω
n
−
t
(
−
sin
2
(
θ
n
)
|
g
,
n
+
1
⟩
−
sin
θ
n
cos
θ
n
|
e
,
n
⟩
)
=
(
e
−
i
ω
n
+
t
+
e
−
i
ω
n
−
t
)
cos
(
2
θ
n
)
|
g
,
n
+
1
⟩
+
(
e
−
i
ω
n
+
t
−
e
−
i
ω
n
−
t
)
sin
(
2
θ
n
)
|
e
,
n
⟩
=
e
−
i
ω
c
(
n
+
1
2
)
[
cos
(
t
2
4
g
2
(
n
+
1
)
+
δ
2
)
[
δ
2
−
4
g
2
(
n
+
1
)
δ
2
+
4
g
2
(
n
+
1
)
]
|
g
,
n
+
1
⟩
+
sin
(
t
2
4
g
2
(
n
+
1
)
+
δ
2
)
[
8
δ
2
g
2
(
n
+
1
)
δ
2
+
4
g
2
(
n
+
1
)
]
|
e
,
n
⟩
]
.
{\displaystyle {\begin{aligned}e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|g,n+1\rangle &=(e^{-i\omega _{n}^{+}t}(\cos ^{2}{(\theta _{n})}|g,n+1\rangle +\sin {\theta _{n}}\cos {\theta _{n}}|e,n\rangle )+e^{-i\omega _{n}^{-}t}(-\sin ^{2}{(\theta _{n})}|g,n+1\rangle -\sin {\theta _{n}}\cos {\theta _{n}}|e,n\rangle )\\&=(e^{-i\omega _{n}^{+}t}+e^{-i\omega _{n}^{-}t})\cos {(2\theta _{n})}|g,n+1\rangle +(e^{-i\omega _{n}^{+}t}-e^{-i\omega _{n}^{-}t})\sin {(2\theta _{n})}|e,n\rangle \\&=e^{-i\omega _{c}(n+{\frac {1}{2}})}{\Biggr [}\cos {{\biggr (}{\frac {t}{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}{\biggr )}}{\biggr [}{\frac {\delta ^{2}-4g^{2}(n+1)}{\delta ^{2}+4g^{2}(n+1)}}{\biggr ]}|g,n+1\rangle +\sin {{\biggr (}{\frac {t}{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}{\biggr )}}{\biggr [}{\frac {8\delta ^{2}g^{2}(n+1)}{\delta ^{2}+4g^{2}(n+1)}}{\biggr ]}|e,n\rangle {\Biggr ]}\end{aligned}}.}
The probability that the two level system is in the excited state
|
e
,
n
⟩
{\displaystyle |e,n\rangle }
as a function of time
t
{\displaystyle t}
is then
P
e
(
t
)
=
|
⟨
e
,
n
|
e
−
i
H
^
JC
t
/
ℏ
|
g
,
n
+
1
⟩
|
2
=
sin
2
(
t
2
4
g
2
(
n
+
1
)
+
δ
2
)
[
8
δ
2
g
2
(
n
+
1
)
δ
2
+
4
g
2
(
n
+
1
)
]
=
4
g
2
(
n
+
1
)
Ω
n
2
sin
2
(
Ω
n
t
2
)
{\displaystyle {\begin{aligned}P_{e}(t)&=|\langle e,n|e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|g,n+1\rangle |^{2}\\&=\sin ^{2}{{\biggr (}{\frac {t}{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}{\biggr )}}{\biggr [}{\frac {8\delta ^{2}g^{2}(n+1)}{\delta ^{2}+4g^{2}(n+1)}}{\biggr ]}\\&={\frac {4g^{2}(n+1)}{\Omega _{n}^{2}}}\sin ^{2}{{\bigr (}{\frac {\Omega _{n}t}{2}}{\bigr )}}\end{aligned}}}
where
Ω
n
=
4
g
2
(
n
+
1
)
+
δ
2
{\displaystyle \Omega _{n}={\sqrt {4g^{2}(n+1)+\delta ^{2}}}}
is identified as the Rabi frequency . For the case that there is no electric field in the cavity, that is, the photon number
n
{\displaystyle n}
is zero, the Rabi frequency becomes
Ω
0
=
4
g
2
+
δ
2
{\displaystyle \Omega _{0}={\sqrt {4g^{2}+\delta ^{2}}}}
. Then, the probability that the two level system goes from its ground state to its excited state as a function of time
t
{\displaystyle t}
is
P
e
(
t
)
=
4
g
2
Ω
0
2
sin
2
(
Ω
0
t
2
)
.
{\displaystyle P_{e}(t)={\frac {4g^{2}}{\Omega _{0}^{2}}}\sin ^{2}{{\bigr (}{\frac {\Omega _{0}t}{2}}{\bigr )}.}}
For a cavity that admits a single mode perfectly resonant with the energy difference between the two energy levels, the detuning
δ
{\displaystyle \delta }
vanishes, and
P
e
(
t
)
{\displaystyle P_{e}(t)}
becomes a squared sinusoid with unit amplitude and period
2
π
g
.
{\displaystyle {\frac {2\pi }{g}}.}
Generalization to N atoms [ ]
The situation in which
N
{\displaystyle N}
two level systems are present in a single-mode cavity is described by the Tavis–Cummings model
[5]
, which has Hamiltonian
H
^
JC
=
ℏ
ω
a
^
†
a
^
+
∑
j
=
1
N
ℏ
ω
0
σ
^
j
z
2
+
ℏ
g
j
(
a
^
σ
^
j
+
+
a
^
†
σ
^
j
−
)
.
{\displaystyle {\hat {H}}_{\text{JC}}=\hbar \omega {\hat {a}}^{\dagger }{\hat {a}}+\sum _{j=1}^{N}{\hbar \omega _{0}{\frac {{\hat {\sigma }}_{j}^{z}}{2}}+\hbar g_{j}\left({\hat {a}}{\hat {\sigma }}_{j}^{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{j}^{-}\right)}.}
Under the assumption that all two level systems have equal individual coupling strength
g
{\displaystyle g}
to the field, the ensemble as a whole will have enhanced coupling strength
g
N
=
g
N
{\displaystyle g_{N}=g{\sqrt {N}}}
. As a result, the vacuum Rabi splitting is correspondingly enhanced by a factor of
N
{\displaystyle {\sqrt {N}}}
.[6]
See also [ ]
References and notes [ ]