2018 in reptile paleontology

From Wikipedia, the free encyclopedia
List of years in reptile paleontology
In paleontology
2015
2016
2017
2018
2019
2020
2021

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2018.

Lizards and snakes[]

Research[]

  • Triassic reptile Megachirella wachtleri is reinterpreted as the oldest known stem-squamate by Simões et al. (2018).[2]
  • Simões et al. (2018) perform X-ray scans at the micron scale of the holotype specimen of Megachirella wachtleri.[3]
  • Fossil trackways probably made by lizards running bipedally are described from the Lower Cretaceous (Aptian-early Albian) Hasandong Formation (South Korea) by Lee et al. (2018), who name a new ichnotaxon hadongensis.[4]
  • New fossil material of bajaensis, providing new information on the tooth replacement pattern in this species, is described from the Campanian of Mexico by Chavarría-Arellano, Simões & Montellano-Ballesteros (2018).[5]
  • A study on the manus of a putative stem-gekkotan from the Cretaceous amber from Myanmar is published by Fontanarrosa, Daza & Abdala (2018), who report the presence of adaptations to climbing, including adhesive structures.[6]
  • A maxilla of a gekkotan of uncertain phylogenetic placement is described from the Late Oligocene Nsungwe Formation (Tanzania) by Müller et al. (2018), representing the second record of a Paleogene gekkotan from Africa and the first one from the central part of the continent.[7]
  • A gekkotan specimen from the collection of the Alexander Koenig Research Museum, originally interpreted as a member of the genus Sphaerodactylus preserved in Dominican amber, is reinterpreted as a specimen belonging to the species Ebenavia boettgeri and as preserved in copal from Madagascar by Daza et al. (2018).[8]
  • A study on differences in the anatomy of the skeletons of the turnip-tailed gecko (Thecadactylus rapicauda) and the tropical house gecko (Hemidactylus mabouia), and on the specific identification of gekkotan subfossil remains from the Pointe Gros Rempart 6 Hole (La Désirade island), is published by Bochaton, Daza & Lenoble (2018).[9]
  • A revision of the lizard fossils from the Upper Cretaceous of Mongolia and China which were originally assigned to the genus is published by Dong et al. (2018), who transfer some of this fossil material to the stem-scincoid genus .[10]
  • New specimen of the Late Jurassic lizard Ardeosaurus brevipes is described from the Solnhofen area (Germany) by Tałanda (2018), who interprets this species as a probable member of the crown group of Scincoidea.[11]
  • Description of putative cordylid fossils from the Miocene of Germany, originally assigned to the taxon informally known as "Bavaricordylus", and a study on their taxonomic status is published by Villa et al. (2018), who reinterpret these fossils as more likely to represent the lacertid genus .[12]
  • Fossils of a member of the genus Timon are described from the Pleistocene of Monte Tuttavista (Sardinia, Italy) by Tschopp et al. (2018), representing the first reported fossil occurrence of this genus from Sardinia.[13]
  • Description of fossils of amphisbaenians and anguimorph lizards from the late Miocene Solnechnodolsk locality (southern European Russia) is published online by Černanský, Syromyatnikova & Jablonski (2018).[14]
  • A dentary of an amphisbaenian belonging or related to the species Blanus strauchi is described from the middle Miocene locality of Gebeceler (Turkey) by Georgalis et al. (2018), representing the first fossil find of a member of the Blanus strauchi species complex and the sole confirmed fossil occurrence of the genus Blanus in the eastern Mediterranean region reported so far.[15]
  • Amphisbaenian vertebral material is described from the Pliocene of northern Greece by Georgalis, Villa & Delfino (2018), representing the youngest occurrence of amphisbaenians in continental Eastern Europe reported so far.[16]
  • Description of temujiniid frontals from the AptianAlbian of the Khobur vertebrate locality (Mongolia) and a study on the placement of Temujiniidae in the phylogenetic tree of Iguanomorpha is published by Alifanov (2018).[17]
  • A study aiming to predict past (late Quaternary), current, and future habitat ranges for lizards belonging to the genus Pogona is published by Rej & Joyner (2018).[18]
  • A premaxilla of a member of the genus Elgaria is described from the Miocene Split Rock Formation (Wyoming, United States) by Scarpetta (2018), representing the oldest known fossil of a member of this genus reported so far.[19]
  • Two specimens assigned to the species Saniwa ensidens, preserving an accessory foramen in the skull indicative of the presence of fourth eye, are described from the Eocene Bridger Formation (Wyoming, United States) by Smith et al. (2018).[20]
  • Fossil vertebrae of varanid lizards are described from the early Miocene Loire Basin (France) by Augé & Guével (2018).[21]
  • Redescription of the morphology of the type material of Varanus marathonensis from the late Miocene of Pikermi (Greece) and description of new fossils of this species from Spain is published by Villa et al. (2018), who consider the species V. amnhophilis to be likely junior synonym of V. marathonensis.[22]
  • A basal mosasauroid specimen including a rib and a vertebra, representing a larger individual than the holotype of Phosphorosaurus ponpetelegans and predating P. ponpetelegans by approximately 10 million years, is reported from the Upper Cretaceous (lower Campanian) of Hokkaido (Japan) by Sato et al. (2018).[23]
  • Description of a Campanian mosasaur assemblage from the Hannover region of northern Germany is published by Hornung, Reich & Frerichs (2018), who confirm the presence of the genus Clidastes in northern central Europe, as well as the early Transatlantic distribution of a basal member of the genus Prognathodon during the lower Campanian.[24]
  • Description of two skulls of subadult specimens of Tylosaurus proriger from the Niobrara Formation (Kansas, United States), and a study on the allometric changes undergone by T. proriger through life, is published by Stewart & Mallon (2018),[25] who reject the hypothesis presented by Jiménez-Huidobro, Simões & Caldwell (2016) that Tylosaurus kansasensis is a junior synonym of Tylosaurus nepaeolicus.[26]
  • The smallest-known, neonate-sized specimen of Tylosaurus is described from the Santonian portion of the Niobrara Chalk (Kansas, United States) by Konishi, Jiménez-Huidobro & Caldwell (2018).[27]
  • A study on the evolution of the skull shape in snakes and on its implications for inferring the ancestral ecology of snakes is published by Da Silva et al. (2018).[28]
  • New method of evaluating the age of fossil snake specimens at the time of death is proposed by Petermann & Gauthier (2018), who also test whether their method can be used to identify isolated fossil remains of the Eocene snake Boavus occidentalis from the Willwood Formation (Wyoming, United States) at the level of individual organisms.[29]
  • Digital endocasts of the inner ears of the madtsoiid snakes Yurlunggur and Wonambi are reconstructed by Palci et al. (2018), who also study the implications of the inner ear morphology of these taxa for inferring their ecology.[30]
  • A natural cast of the posterior brain, skull vessels and nerves, and the inner ear of Dinilysia patagonica is described by Triviño et al. (2018).[31]
  • A study on the phylogenetic relationships of the Miocene snake Pseudoepicrates stanolseni is published by Onary & Hsiou (2018), who transfer this species to the boid genus Chilabothrus.[32]
  • Description of snake fossils from the Pliocene/Pleistocene El Breal de Orocual locality and from the late Pleistocene Mene de Inciarte locality (Venezuela) is published by Onary, Rincón & Hsiou (2018).[33]
  • Inflammatory arthritis is documented for the first time in snakes, including the aquatic Cretaceous snake aquaticus, by Albino et al. (2018).[34]
  • Revision of lizard and snake fossils from the Pliocene site of Kanapoi (Kenya) is published online by Head & Müller (2018).[35]

New taxa[]

Name Novelty Status Authors Age Type locality Country Notes Images

[36]

Gen. et sp. nov

Valid

McCartney et al.

Paleocene

 Mali

A snake belonging to the family . The type species is A. sanogoi.

[37]

Gen. et sp. nov

Valid

Albino

Early Eocene

 Argentina

A snake. Genus includes new species A. scagliai.

Anguis rarus[38]

Sp. nov

Valid

Klembara & Rummel

Early Miocene

 Germany

A slow worm.

[39]

Gen. et sp. nov

Valid

Daza et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

Probable member of Anguimorpha of uncertain phylogentic placement. The type species is B. winhtini.

Bicuspidon hogreli[40]

Sp. nov

Valid

Vullo & Rage

Late Cretaceous (Cenomanian)

Kem Kem Beds

 Morocco

A polyglyphanodontid lizard

[41]

Sp. nov

Valid

Bochaton & Bailon

Late Pleistocene

 France
(Marie-Galante Island)

A species of Boa.

[42]

Sp. nov

Valid

Quadros, Chafrat & Zaher

Early Miocene

 Argentina

A teiid lizard, a species of Callopistes.

[43]

Sp. nov

Valid

Čerňanský, Daza & Bauer

Miocene (Astaracian)

 Slovakia

A relative of the European leaf-toed gecko.

[44]

Gen. et sp. nov

Valid

Paparella et al.

Late Cretaceous (late Campanian–early Maastrichtian)

 Italy

A member of the family Dolichosauridae. The type species is P. manduriensis.

Stenoplacosaurus[45]

Gen. et comb. nov

Valid

Sullivan & Dong

Middle Eocene (Sharamurunian)


 China

An anguid lizard belonging to the subfamily Glyptosaurinae. The type species is "Helodermoides" mongoliensis Sullivan (1979).

[46]

Gen. et sp. nov

Valid

Alifanov

Late Paleocene

 Mongolia

A platynotan lizard belonging to the family Parasaniwidae. The type species is T. nemegetensis.

Tylosaurus saskatchewanensis[47]

Sp. nov

Valid

Jiménez-Huidobro et al.

Late Cretaceous (late Campanian)

Bearpaw Formation

 Canada
( Saskatchewan)

A mosasaur

[48]

Gen. et sp. nov

Xing et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A snake described on the basis of a fossilized embryo or neonate. The type species is X. myanmarensis.

Ichthyosauromorphs[]

  • A study aiming to identify sexual dimorphism, taxonomic variation and individual variation among the specimens of Chaohusaurus chaoxianensis is published by Motani et al. (2018).[49]
  • A survey of the form and distribution of pathological structures in the skeletons of ichthyosaurs is published by Pardo-Pérez et al. (2018).[50]
  • A study on the microanatomy of vertebral centra of ichthyosaurs, aiming to establish whether there is any variation between the primitive and the most derived forms, is published by Houssaye, Nakajima & Sander (2018).[51]
  • Humeri of Pessopteryx nisseri and vertebrae referred to the genus Cymbospondylus are described from the Lower Triassic Vikinghøgda Formation (Spitsbergen, Norway) by Engelschiøn et al. (2018).[52]
  • A large, isolated jaw fragment of a giant ichthyosaur is described from the Upper Triassic (Rhaetian) Westbury Mudstone Formation (United Kingdom) by Lomax et al. (2018), who also reinterpret some putative dinosaur limb bone shafts from the Upper Triassic of Aust Cliff as more likely to be ichthyosaur fossils.[53]
  • Ichthyosaur fossils, including an incomplete skeleton of a member of the genus Leptonectes, are described from the Lower Jurassic (Pliensbachian) of Asturias (Spain) by Fernández, Piñuela & García-Ramos (2018).[54]
  • Remains of ichthyosaur embryos, still situated within a fragment of the rib-cage of the parent animal, are described from the Lower Jurassic (Toarcian) Whitby Mudstone Formation (United Kingdom) by Boyd & Lomax (2018).[55]
  • Ichthyosaur remains from the Lower Cretaceous Agrio Formation (Neuquén Basin, Argentina) are described by Lazo et al. (2018).[56]
  • New specimen of Phalarodon fraasi is described from the Middle Triassic (Svalbard, Norway) by Økland et al. (2018).[57]
  • Redescription of the relocated holotype of Suevoleviathan integer is published by Maxwell (2018), who considers the species Suevoleviathan disinteger to be a junior synonym of S. integer.[58]
  • A study on specimens of Temnodontosaurus from the Early Jurassic of southern Germany, aiming to document the types of pathologies observed in the skeletons of specimens assigned to this genus, is published by Pardo-Pérez et al. (2018).[59]
  • Four isolated partial skulls from the Lower Jurassic of the United Kingdom, previously identified as Ichthyosaurus communis, are assigned to the species Protoichthyosaurus prostaxalis and P. applebyi by Lomax & Massare (2018), providing new information on the anatomy of these taxa.[60]
  • A reassessment of Ichthyosaurus communis and I. intermedius is published by Massare & Lomax (2018), who consider the latter species to be a junior synonym of the former.[61]
  • A study on the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of Stenopterygius is published by Lindgren et al. (2018).[62]
  • A study on the anatomy of an ophthalmosaurid rostrum fragment from the Upper Jurassic (Oxfordian) in the Morawica quarry in the Świętokrzyskie Mountains (Poland), and on its implications for reconstructing the internal morphology of the ophthalmosaurid cranial region and inferring the functional adaptations and palaeoecology of these reptiles, is published online by Tyborowski, Skrzycki & Dec (2018).[63]
  • New specimen of Palvennia hoybergeti, providing new information on the anatomy of this species, is described from the Upper Jurassic Slottsmøya Member of the Agardhfjellet Formation (Spitsbergen, Norway) by Delsett et al. (2018).[64]
  • A revision of British ichthyosaur taxa of the Late Jurassic is published by Moon & Kirton (2018).[65]

Sauropterygians[]

Research[]

  • A study aiming to estimate metabolic rates and bone growth rates in eosauropterygians, especially in plesiosaurs, is published by Fleischle, Wintrich & Sander (2018).[66]
  • A study on the histology and life history of the Middle Triassic pachypleurosaurs: Dactylosaurus from the early Anisian of Poland and aff. Neusticosaurus pusillus from the early Ladinian of southern Germany is published by Klein & Griebeler (2018).[67]
  • Periosteal reaction to a tuberculosis-like respiratory infection affecting ribs of the holotype specimen of "" silesiacus is reported by Surmik et al. (2018).[68]
  • A study on the variability of the skull morphology in Simosaurus gaillardoti is published by de Miguel Chaves, Ortega & Pérez-García (2018).[69]
  • A study on the internal anatomy of the skull of Nothosaurus marchicus is published by Voeten et al. (2018).[70]
  • An incomplete mandible of a large-bodied predatory plesiosaur is described from the Lower Cretaceous (Barremian) (Germany) by Sachs et al. (2018).[71]
  • The first Jurassic plesiosaur from Antarctica is described from the Upper Jurassic Ameghino (= Nordensköld) Formation (Antarctic Peninsula) by O’Gorman et al. (2018).[72]
  • Morphologically diverse pliosaurid teeth are described from the Upper Jurassic (Tithonian) of the Kheta river basin (Eastern Siberia, Russia) and from the Lower Cretaceous (Berriasian and Valanginian) of the Volga region (European Russia) by Zverkov et al. (2018), who argue that their findings challenge the hypothesis that only one lineage of pliosaurids crossed the Jurassic–Cretaceous boundary.[73]
  • Complete mandible of Kronosaurus queenslandicus is described from the Albian Allaru Mudstone (Australia) by Holland (2018).[74]
  • Description of the skull bones of Abyssosaurus nataliae from the Cretaceous (Hauterivian) of Chuvashia (Russia) is published by Berezin (2018), who also revises the species diagnosis.[75]
  • A study on a specimen of Cryptoclidus eurymerus from the Middle Jurassic (Callovian) of Peterborough (United Kingdom), with the left forelimb injured by a predator causing the loss of use of this limb but which nevertheless survived for some time after that injury, is published by Rothschild, Clark & Clark (2018), who also evaluate the implications of this specimen for the various hypotheses on plesiosaur propulsion.[76]
  • A study on the range of motion of the neck of an exceptionally preserved specimen of Nichollssaura borealis is published by Nagesan, Henderson & Anderson (2018).[77]
  • A study on the morphology of Thililua longicollis and on the phylogenetic relationships of members of the family Polycotylidae is published by Fischer et al. (2018), who name a new clade .[78]
  • Two new plesiosaur specimens, including a specimen of the species Libonectes morgani (otherwise known from North American fossils), are described from the Upper Cretaceous (Turonian) deposits of Goulmima (Morocco) by Allemand et al. (2018).[79]
  • Description of a skull and partial postcranial skeleton of a juvenile elasmosaurid from the Upper Cretaceous Tahora Formation (New Zealand), referred to the species Tuarangisaurus keyesi, is published by Otero et al. (2018).[80]
  • An exceptionally well-preserved elasmosaurid basicranium, providing new information on the anatomy of the skull of elasmosaurids, is described from the Upper Cretaceous (lower Campanian) Rybushka Formation (Russia) by Zverkov, Averianov & Popov (2018).[81]
  • Redescription of Aristonectes quiriquinensis, providing new information on the anatomy of this species, is published by Otero, Soto-Acuña & O'keefe (2018).[82]
  • Cranial material of a non-aristonectine elasmosaurid plesiosaur is described from the Upper Cretaceous (Maastrichtian) Cape Lamb Member of the Snow Hill Island Formation (Vega Island, Antarctica) by O'Gorman et al. (2018).[83]
  • New elasmosaurid specimen is described from the upper Maatrichtian horizons of the Lopez de Bertodano Formation (Antarctica) by O’Gorman et al. (2018), representing one of the youngest non-aristonectine weddellonectian elasmosaurid specimens from Antarctica reported so far, documenting the presence of at least two different non-aristonectine elasmosaurids in Antarctica during the late Maastrichtian, and confirming the coexistence of aristonectine and non-aristonectine elasmosaurids in Antarctica until the end of the Cretaceous.[84]
  • Redescription of the holotype of Styxosaurus snowii and a study on the phylogenetic relationships of this species is published by Sachs, Lindgren & Kear (2018).[85]

New taxa[]

Name Novelty Status Authors Age Type locality Country Notes Images

Arminisaurus[86]

Gen. et sp. nov

Valid

Sachs & Kear

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

An early relative of pliosaurids. The type species is A. schuberti.

Paludidraco[87]

Gen. et sp. nov

Valid

De Miguel Chaves, Ortega & Pérez‐García

Late Triassic

 Spain

A relative of Simosaurus. Genus includes new species P. multidentatus.

Parahenodus[88]

Gen. et sp. nov

Valid

De Miguel Chaves, Ortega & Pérez‐García

Late Triassic (CarnianNorian)

 Spain

A placodont related to Henodus. Genus includes new species P. atancensis.

Pliosaurus almanzaensis [89]

Sp. nov

Valid

O’Gorman, Gasparini & Spalletti

Late Jurassic (Tithonian)

Vaca Muerta

 Argentina

Sachicasaurus[90]

Gen. et sp. nov

Valid

Páramo-Fonseca, Benavides-Cabra & Gutiérrez

Early Cretaceous (Barremian)

Paja Formation

 Colombia

A pliosaurid belonging to the subfamily Brachaucheninae. The type species is S. vitae.

Turtles[]

Research[]

  • A study on the changes in diversity of South American turtles from the Late Triassic to the present, and on major extinction events of South American turtles, is published by Vlachos et al. (2018).[91]
  • A study on the Early and Middle Triassic turtle tracks and their implications for the origin of turtles is published by Lichtig et al. (2018).[92]
  • Fossil turtle footprints are described from the Triassic (Carnian) localities in eastern Spain by Reolid et al. (2018), who interpret the findings as indicating a freshwater semi-aquatic habit for some early turtles during the early Late Triassic.[93]
  • A revision of Late Cretaceous turtle fossils from the El Gallo Formation (Baja California, Mexico) is published by López-Conde et al. (2018).[94]
  • A clutch of 15 turtle eggs, found in close association with a partial skeleton of the dinosaur Mosaiceratops azumai, is described from the Upper Cretaceous Xiaguan Formation (China) by Jackson et al. (2018), who report that the size of these eggs exceeds that of all previously reported fossil turtle eggs.[95]
  • A study on the anatomy of the brain, inner ear, nasal cavity and skull nerves of Proganochelys quenstedti, and on its implications for inferring the sensory capabilities and ecology of the species and for the evolution of turtle brains is published by Lautenschlager, Ferreira & Werneburg (2018).[96]
  • A study on the external variability and abnormalities observed in the carapace and plastron of robusta and Proterochersis porebensis is published by Szczygielski, Słowiak & Dróżdż (2018).[97]
  • A study on the anatomy and phylogenetic relationships of Kallokibotion bajazidi based on well-preserved new fossil material is published by Pérez-García & Codrea (2018).[98]
  • A study on the paleoecology of Meiolania platyceps is published by Lichtig & Lucas (2018).[99]
  • A study on the phylogenetic relationships of extant and fossil pleurodirans is published by Ferreira et al. (2018).[100]
  • New fossil material of the bothremydid peregrinus, providing new information on the anatomy and intraspecific variability of the species, is described from the Upper Cretaceous (Cenomanian) of the Arenas de Utrillas Formation (Spain) by Pérez-García (2018), who also transfers the species "Podocnemis" parva Haas (1978) and "" tibert Joyce, Lyson & Kirkland (2016) to the genus Algorachelus.[101]
  • A study on the anatomy of the shell of the bothremydid species Taphrosphys congolensis, and on its implications for inferring the taxonomic composition of the genus Taphrosphys, is published online by Pérez García, Mees & Smith (2018).[102]
  • A revision of bothremydid fossils in the lower Eocene British record, assigned to the species "Platemys" bowerbankii Owen (1842), "Emys" laevis Bell in Owen & Bell (1849), "Emys" delabechii Bell in Owen & Bell (1849), and "Emys" conybearii Owen (1858), is published by Pérez-García (2018), who interprets all this fossil material as representing a single species bowerbankii.[103]
  • A restudy of the type material of the Late Cretaceous pan-chelid rinconensis and a description of new fossils of the species is published by Jannello et al. (2018).[104]
  • Redescription of the Eocene chelid based on twenty‐seven new specimens recovered from lower levels of the (Argentina) and a study on the phylogenetic relationships of this species is published by Maniel et al. (2018).[105]
  • Description of the morphology of the skull of the Eocene carettochelyid Anosteira pulchra is published by Joyce, Volpato & Rollot (2018).[106]
  • A study on the phylogenetic relationships of the putative emydine auffenbergi is published by Ferreira, Bandyopadhyay & Joyce (2018), who reinterpret this species as a member of the family Podocnemididae.[107]
  • A study on the skull innervation and circulation of cephalica, based on data from a new specimen, is published by Rollot, Lyson & Joyce (2018).[108]
  • Fragmentary trionychid specimen is described from the Upper Cretaceous (Turonian to Maastrichtian) Nanaimo Group (Vancouver Island, British Columbia, Canada) by Vavrek & Brinkman (2018), representing the first trionychid reported from Cretaceous deposits along the Pacific Coast of North America.[109]
  • Taxonomic review of fossil testudinoids from South America is published by de la Fuente, Zacarías & Vlachos (2018).[110]
  • A study on the phylogenetic relationships and body size evolution of extant and extinct tortoises is published by Vlachos & Rabi (2018).[111]
  • A study on the holotype specimen of a purported tortoise from the Oligocene or early Miocene of Costa Rica, "Testudo" costarricensis, is published by Lichtig, Lucas & Alvarado (2018), who reinterpret this specimen as a fossil of laticunea collected from the Eocene-Oligocene White River Group of the western United States.[112]
  • Description of new specimens of the tortoise from the Pleistocene of the Okinawa Island (Japan) and a study on the phylogenetic relationships of this species is published by Takahashi, Hirayama & Otsuka (2018).[113]
  • A study on the sources of variation in the morphology of the carapaces of extant and fossil common box turtles (Terrapene carolina) is published by Vitek (2018).[114]
  • A tail vertebra of the common snapping turtle is described from the late Pleistocene of New Jersey by Brownstein (2018), representing the northernmost occurrence of this species in eastern North America during the Pleistocene.[115]
  • Redescription of the holotype of Rhinochelys amaberti from the Cretaceous (Albian) of France and a study on the phylogenetic relationships of this species is published by Scavezzoni & Fischer (2018).[116]
  • A study on the anatomy of the skull of the holotype specimen of Desmatochelys lowii is published by Raselli (2018).[117]
  • Description of newly identified fossil material of from the collections at McWane Science Center and the Alabama Museum of Natural History, collected from multiple sites from the Upper Cretaceous Mooreville Chalk and Eutaw Formation (Alabama, United States), and a study on the taxonomy and phylogenetic relationships of Prionochelys is published by Gentry (2018).[118]
  • A nearly complete skull and mandible of a subadult specimen of Euclastes wielandi is described from the Danian Hornerstown Formation (New Jersey, United States) by Ullmann, Boles & Knell (2018).[119]
  • An isolated costal bone of a sea turtle is described from the Oligocene Dos Bocas Formation (Ecuador) by Cadena, Abella & Gregori (2018), representing the first record of Oligocene Pancheloniidae in South America.[120]
  • Remains of leatherback sea turtles (Dermochelys coriacea) recovered from Mid to Late Holocene sites at Ra's al-Hamra and Ra's al-Hadd (coastal Oman) are described by Frazier et al. (2018).[121]

New taxa[]

Name Novelty Status Authors Age Type locality Country Notes Images

Allaeochelys rouzilhacensis[122]

Sp. nov

Valid

Godinot et al.

Eocene

 France

A member of the family Carettochelyidae.

Barnesia[123]

Gen. et comb. nov

Junior homonym

Karl

Eocene (Lutetian)

 Germany

A tortoise; a new genus for "Testudo" eocaenica Hummel (1935). The generic name is preoccupied by Barnesia Bertoni (1901) and Barnesia Thalmann (1994).

Basilemys morrinensis[124]

Sp. nov

Valid

Mallon & Brinkman

Late Cretaceous (early Maastrichtian)

Horseshoe Canyon Formation

 Canada
( Alberta)

A member of Cryptodira belonging to the family Nanhsiungchelyidae.

[123]

Sp. nov

Valid

Karl

Eocene

Eckfelder Maar

 Germany

A member of the family Geoemydidae.

Borkenia philippeni[123]

Sp. nov

Valid

Karl

Eocene (Lutetian)

Eckfelder Maar

 Germany

A member of the family Geoemydidae.

[125]

Sp. nov

Valid

Albury et al.

Probably Late Quaternary

 Dominican Republic

A species of Chelonoidis.

Eochelone voltregana[126]

Sp. nov

Valid

Lapparent de Broin et al.

Eocene (Priabonian)

 Spain

A member of the family Cheloniidae.

[123]

Gen. et sp. nov

Valid

Karl

Eocene (Lutetian)

Eckfelder Maar

 Germany

A tortoise. The type species is E. eiflaensis.

[123]

Gen. et comb. nov

Valid

Karl

Eocene (Lutetian)

 Austria

A tortoise; a new genus for "Cheirogaster" steinbacheri Karl (1996).

Eotaphrosphys[127]

Gen. et comb. nov

Valid

Pérez-García

Late Cretaceous (Maastrichtian)

 France

A member of Bothremydidae; a new genus for "" ambiguum Gaudry (1890).

[122]

Gen. et sp. nov

Valid

De Lapparent de Broin in Godinot et al.

Eocene

 France

A member of the family Carettochelyidae. Genus includes new species E. labarrerei.

Gilmoremys gettyspherensis[128]

Sp. nov

Valid

Joyce, Lyson & Sertich

Late Cretaceous (late Campanian)

Fruitland Formation

 United States
( New Mexico)

Jeholochelys[129]

Gen. et sp. nov

Valid

Shao et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A member of the family Sinemydidae. The type species is J. lingyuanensis.

[130]

Sp. nov

Valid

Vlachos et al.

Late Miocene to Pliocene

 Greece

A species of Mauremys.

Motelomama[127]

Gen. et comb. nov

Valid

Pérez-García

Eocene (Ypresian)

 Peru

A member of Bothremydidae; a new genus for "Podocnemis" olssoni Schmidt (1931).

Owadowia[131]

Gen. et sp. nov

Valid

Szczygielski, Tyborowski & Błażejowski

Late Jurassic (Tithonian)

 Poland

A member of Pancryptodira. The type species is O. borsukbialynickae.

Peritresius martini[132]

Sp. nov

Valid

Gentry et al.

Late Cretaceous (late Campanian)

Lower Ripley Formation

 United States
( Alabama)

A member of Pancheloniidae.

Sinemys chabuensis[133]

Sp. nov

Valid

Ji & Chen

Early Cretaceous

Jingchuan Formation

 China

[134]

Sp. nov

Valid

Jasinski

Late Hemphillian

Gray Fossil Site

 United States
( Tennessee)

A species of Trachemys.

[135]

Gen. et sp. nov

Valid

Ferreira et al.

Late Cretaceous

Adamantina Formation

 Brazil

A member of Pleurodira related to Peiropemys. Genus includes new species Y. montealtensis.

Archosauriformes[]

General research[]

  • A study on the diversification of archosauromorph reptiles from the Middle Permian to the early Late Triassic is published by Ezcurra & Butler (2018).[136]
  • A study on the phylogenetic relationships of phytosaurs is published by Jones & Butler (2018).[137]

Archosaurs[]

Other reptiles[]

Research[]

  • The study on the phylogenetic relationships of mesosaurs and other early reptiles published by Laurin & Piñeiro (2017)[138] is reevaluated by MacDougall et al. (2018).[139][140]
  • An adult specimen of Stereosternum tumidum preserved next to juvenile material, providing new information on the baseline ossification sequences and growth rates in this species, is described from Lower Permian sediments of the Irati Formation (Brazil) by Bickelmann & Tsuji (2018).[141]
  • A study evaluating the purported aquatic adaptations of Mesosaurus tenuidens is published by Nuñez Demarco et al. (2018).[142]
  • Description of the anatomy of the lower jaw of Delorhynchus is published by Haridy, Macdougall & Reisz (2018).[143]
  • Pathological sacral vertebrae of a pareiasaur belonging to the clade Velosauria are described from the Permian (Wuchiapingian) upper member of the Madumabisa Mudstone Formation (Luangwa Basin, Zambia) by Turner & Sidor (2018).[144]
  • A new skull ascribed to Procolophon trigoniceps, so far representing the most complete and best preserved specimen collected at the Lower Triassic Sanga do Cabral Supersequence (Brazil), is described by Silva-Neves, Modesto & Dias-da-Silva (2018).[145]
  • Fragments of the mandible of a small reptile, possibly Ruhuhuaria reiszi, are described from the Triassic Manda Beds of Tanzania by Bradley & Nesbitt et al. (2018).[146]
  • A study on the effect of inclusion and exclusion of autapomorphies on the analyses of phylogenetic relationships of early eureptiles is published by Matzke & Irmis (2018).[147]
  • A study on the anatomy and histology of the caudal vertebrae of Permian captorhinids from the Richards Spur locality (Oklahoma, United States), supporting previous hypotheses that Captorhinus and other early Permian captorhinids were capable of tail autotomy, is published by LeBlanc et al. (2018).[148]
  • A study on the teeth of Opisthodontosaurus carrolli is published by Haridy, LeBlanc & Reisz (2018), who present evidence of regular tooth replacement events in the lower jaw of O. carrolli.[149]
  • Jaw elements of members of an otherwise Gondwanan diapsid genus Palacrodon are described from the Upper Triassic Chinle Formation (Arizona, United States) by Kligman, Marsh & Parker (2018).[150]
  • A study evaluating the taxon richness of terrestrial lepidosaurs through time, from the Triassic to the Paleogene, is published by Cleary et al. (2018).[151]
  • Description of two specimens of the rhynchocephalian species Clevosaurus hudsoni from the Upper Triassic of the Cromhall Quarry (United Kingdom), providing new information on the anatomy of the species, is published by O’Brien, Whiteside & Marshall (2018).[152]
  • A study on a fossil tooth of Eilenodon robustus from the Jurassic Morrison Formation (Colorado, United States), utilizing both X-ray and neutron computed tomography, is published by Jones et al. (2018).[153]
  • A study on the anatomy of the skeleton of Pappochelys rosinae is published by Schoch & Sues (2018).[154]
  • Probable tanystropheid neck vertebrae are described from the Lower Triassic Sanga do Cabral Formation (Brazil) by De Oliveira et al. (2018).[155]
  • A study on the taphonomy of the skeletons of Tanystropheus longobardicus from the Middle Triassic Besano Formation (Monte San Giorgio, Switzerland) and its implications for inferring whether Tanystropheus was terrestrial or aquatic is published by Beardmore & Furrer (2018).[156]
  • A re-analysis of the osteology of Tanystropheus, a reconstruction of the musculature of the tail, pelvic girdle and hindlimbs of the taxon and a study on the locomotion and lifestyle of the taxon is published by Renesto & Saller (2018).[157]
  • Description of the maxillary tooth plate and dentary teeth of the rhynchosaur species Hyperodapedon sanjuanensis is published by Gentil & Ezcurra (2018).[158]
  • Description of a new skeleton of Prolacerta broomi from the Lower Triassic (Induan) Fremouw Formation (Antarctica), constituting the most complete Antarctic specimen to date, is published by Spiekman (2018).[159]
  • A study on the morphological variation of the fifth metatarsals of Early Triassic diapsid reptiles from the Czatkowice locality (Poland), assessed in functional and phylogenetic terms, is published by Borsuk-Białynicka (2018).[160]

New taxa[]

Name Novelty Status Authors Age Type locality Country Notes Images

Clevosaurus cambrica[161]

Sp. nov

Valid

Keeble, Whiteside & Benton

Late Triassic

 United Kingdom

A small rhynchocephalian known from Rhaetian fissure fill deposits.

Colobops[162]

Gen. et sp. nov

Valid

Pritchard et al.

Late Triassic (Norian)

Newark Supergroup

 United States
( Connecticut)

A reptile of uncertain phylogenetic placement, possibly a rhynchosaur[162] or a rhynchocephalian.[163] The type species is C. noviportensis.

Elginia wuyongae[164]

Sp. nov

Valid

Liu & Bever

Late Permian

Naobaogou Formation

 China

A pareiasaurid parareptile

Eorhynchochelys[165]

Gen. et sp. nov

Valid

Li et al.

Late Triassic (Carnian)

 China

A stem-turtle. The type species is E. sinensis.

Fraserosphenodon[166]

Gen. et comb. nov

Valid

Herrera-Flores et al.

Late Triassic

 United Kingdom

A rhynchocephalian belonging to the group Opisthodontia; a new genus for "Clevosaurus" latidens Fraser (1993).

Fraxinisaura[167]

Gen. et sp. nov

Valid

Schoch & Sues

Middle Triassic (Ladinian)

 Germany

A member of Lepidosauromorpha, probably a relative of Marmoretta oxoniensis. Genus includes new species F. rozynekae.

Labidosauriscus[168]

Gen. et sp. nov

Valid

Modesto, Scott & Reisz

Early Permian

Richards Spur locality

 United States
( Oklahoma)

A member of the family Captorhinidae. Genus includes new species L. richardi.

Mandaphon[169]

Gen. et sp. nov

Valid

Tsuji

Triassic

Manda Formation

 Tanzania

A member of the family Procolophonidae. The type species is M. nadra.

[170]

Gen. et sp. nov

Perner

Middle Triassic (Ladinian)

 Italy

A small reptile of uncertain phylogenetic placement, possibly an archosaur. The type species is W. ladinicus.

References[]

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Tiago R. Simões; Michael W. Caldwell; Mateusz Tałanda; Massimo Bernardi; Alessandro Palci; Oksana Vernygora; Federico Bernardini; Lucia Mancini; Randall L. Nydam (2018). "The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps". Nature. 557 (7707): 706–709. Bibcode:2018Natur.557..706S. doi:10.1038/s41586-018-0093-3. PMID 29849156. S2CID 44108416.
  3. ^ Tiago R. Simões; Michael W. Caldwell; Mateusz Tałanda; Massimo Bernardi; Alessandro Palci; Oksana Vernygora; Federico Bernardini; Lucia Mancini; Randall L. Nydam (2018). "X-ray computed microtomography of Megachirella wachtleri". Scientific Data. 5: Article number 180244. Bibcode:2018NatSD...580244S. doi:10.1038/sdata.2018.244. PMC 6219415. PMID 30398474.
  4. ^ Hang-Jae Lee; Yuong-Nam Lee; Anthony R. Fiorillo; Junchang Lü (2018). "Lizards ran bipedally 110 million years ago". Scientific Reports. 8 (1): Article number 2617. Bibcode:2018NatSR...8.2617L. doi:10.1038/s41598-018-20809-z. PMC 5814403. PMID 29449576.
  5. ^ María Luisa Chavarría-Arellano; Tiago R. Simões; Marisol Montellano-Ballesteros (2018). "New data on the Late Cretaceous lizard Dicothodon bajaensis (Squamata, Borioteiioidea) from Baja California, Mexico reveals an unusual tooth replacement pattern in squamates". Anais da Academia Brasileira de Ciências. 90 (3): 2781–2795. doi:10.1590/0001-3765201820170563. PMID 30043904. S2CID 51717475.
  6. ^ Gabriela Fontanarrosa; Juan D. Daza; Virginia Abdala (2018). "Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand". Cretaceous Research. 84: 120–133. doi:10.1016/j.cretres.2017.11.003.
  7. ^ Johannes Müller; Eric Roberts; Emily Naylor; Nancy Stevens (2018). "A fossil gekkotan (Squamata) from the Late Oligocene Nsungwe Formation, Rukwa Rift Basin, Tanzania". Journal of Herpetology. 52 (2): 223–227. doi:10.1670/17-123. S2CID 90162270.
  8. ^ Juan D. Daza; Jordan P. Hunziker; Aaron M. Bauer; Philipp Wagner; Wolfgang Böhme (2018). "Things are not always as they seem: High-resolution X-ray CT scanning reveals the first resin-embedded miniature gecko of the genus Ebenavia". Bonn Zoological Bulletin. 67 (2): 71–77. doi:10.20363/BZB-2018.67.2.071.
  9. ^ Corentin Bochaton; Juan D. Daza; A. Lenoble (2018). "Identifying gecko species from Lesser Antillean paleontological assemblages: intraspecific osteological variation within and interspecific osteological differences between Thecadactylus rapicauda (Houttuyn, 1782) (Phyllodactylidae) and Hemidactylus mabouia (Moreau de Jonnès, 1818) (Gekkonidae)". Journal of Herpetology. 52 (3): 313–320. doi:10.1670/17-093. S2CID 91589236.
  10. ^ Liping Dong; Xing Xu; Yuan Wang; Susan E. Evans (2018). "The lizard genera Bainguis and Parmeosaurus from the Upper Cretaceous of China and Mongolia". Cretaceous Research. 85: 95–108. doi:10.1016/j.cretres.2018.01.002.
  11. ^ Mateusz Tałanda (2018). "An exceptionally preserved Jurassic skink suggests lizard diversification preceded fragmentation of Pangaea". Palaeontology. 61 (5): 659–677. doi:10.1111/pala.12358.
  12. ^ Andrea Villa; Ralf Kosma; Andrej Čerňanský; Massimo Delfino (2018). "Taxonomical assessment of "Bavaricordylus" Kosma, 2004 (Reptilia, Squamata)". Journal of Vertebrate Paleontology. 38 (4): (1)–(4). doi:10.1080/02724634.2018.1487844. S2CID 92204787.
  13. ^ Emanuel Tschopp; Andrea Villa; Marco Camaiti; Letizia Ferro; Caterinella Tuveri; Lorenzo Rook; Marisa Arca; Massimo Delfino (2018). "The first fossils of Timon (Squamata: Lacertinae) from Sardinia (Italy) and potential causes for its local extinction in the Pleistocene". Zoological Journal of the Linnean Society. 184 (3): 825–856. doi:10.1093/zoolinnean/zly003.
  14. ^ Andrej Černanský; Elena V. Syromyatnikova; Daniel Jablonski (2018). "The first record of amphisbaenian and anguimorph lizards (Reptilia, Squamata) from the upper Miocene Solnechnodolsk locality in Russia". Historical Biology: An International Journal of Paleobiology. 32 (7): 869–879. doi:10.1080/08912963.2018.1539973. S2CID 91645142.
  15. ^ Georgios L. Georgalis; Kazim Halaçlar; Serdar Mayda; Tanju Kaya; Dinçer Ayaz (2018). "First fossil find of the Blanus strauchi complex (Amphisbaenia, Blanidae) from the Miocene of Anatolia" (PDF). Journal of Vertebrate Paleontology. 38 (2): e1437044. doi:10.1080/02724634.2018.1437044. S2CID 89978957.
  16. ^ Georgios L. Georgalis; Andrea Villa; Massimo Delfino (2018). "The last amphisbaenian (Squamata) from continental Eastern Europe" (PDF). Annales de Paléontologie. 104 (2): 155–159. doi:10.1016/j.annpal.2018.03.002.
  17. ^ V. R. Alifanov (2018). "Lizards of the family Temujiniidae (Iguanomorpha): finds from the Aptian–Albian of Mongolia, classification and geographical origin". Paleontological Journal. 52 (6): 653–663. doi:10.1134/S0031030118060023. S2CID 91258660.
  18. ^ Julie E. Rej; T. Andrew Joyner (2018). "Niche modeling for the genus Pogona (Squamata: Agamidae) in Australia: predicting past (late Quaternary) and future (2070) areas of suitable habitat". PeerJ. 6: e6128. doi:10.7717/peerj.6128. PMC 6301283. PMID 30588407.
  19. ^ Simon Scarpetta (2018). "The earliest known occurrence of Elgaria (Squamata: Anguidae) and a minimum age for crown Gerrhonotinae: Fossils from the Split Rock Formation, Wyoming, USA". Palaeontologia Electronica. 21 (1): 1–8. doi:10.26879/837.
  20. ^ Krister T. Smith; Bhart-Anjan S. Bhullar; Gunther Köhler; Jörg Habersetzer (2018). "The only known jawed vertebrate with four eyes and the Bauplan of the pineal complex". Current Biology. 28 (7): 1101–1107.e2. doi:10.1016/j.cub.2018.02.021. PMID 29614279. S2CID 4609974.
  21. ^ Marc Louis Augé; Bruno Guével (2018). "New varanid remains from the Miocene (MN4–MN5) of France: inferring fossil lizard phylogeny from subsets of large morphological data sets". Journal of Vertebrate Paleontology. 38 (1): e1410483. doi:10.1080/02724634.2017.1410483. S2CID 90237629.
  22. ^ Andrea Villa; Juan Abella; David M. Alba; Sergio Almécija; Arnau Bolet; George D. Koufos; Fabien Knoll; Àngel H. Luján; Jorge Morales; Josep M. Robles; Israel M. Sánchez; Massimo Delfino (2018). "Revision of Varanus marathonensis (Squamata, Varanidae) based on historical and new material: morphology, systematics, and paleobiogeography of the European monitor lizards". PLOS ONE. 13 (12): e0207719. Bibcode:2018PLoSO..1307719V. doi:10.1371/journal.pone.0207719. PMC 6281198. PMID 30517172.
  23. ^ Tamaki Sato; Takuya Konishi; Tomohiro Nishimura; Takeru Yoshimura (2018). "A basal mosasauroid from the Campanian (Upper Cretaceous) of Hokkaido, northern Japan". Paleontological Research. 22 (2): 156–166. doi:10.2517/2017PR018. S2CID 134730231.
  24. ^ Jahn J. Hornung; Mike Reich; Udo Frerichs (2018). "A mosasaur fauna (Squamata: Mosasauridae) from the Campanian (Upper Cretaceous) of Hannover, northern Germany". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 543–559. doi:10.1080/03115518.2018.1434899. S2CID 134724144.
  25. ^ Robert F. Stewart; Jordan C. Mallon (2018). "Allometric growth in the skull of Tylosaurus proriger (Squamata: Mosasauridae) and its taxonomic implications". Vertebrate Anatomy Morphology Palaeontology. 6: 75–90. doi:10.18435/vamp29339. S2CID 91370191.
  26. ^ Paulina Jiménez-Huidobro; Tiago R. Simões; Michael W. Caldwell (2016). "Re-characterization of Tylosaurus nepaeolicus (Cope, 1874) and Tylosaurus kansasensis Everhart, 2005: Ontogeny or sympatry?". Cretaceous Research. 65: 68–81. doi:10.1016/j.cretres.2016.04.008.
  27. ^ Takuya Konishi; Paulina Jiménez-Huidobro; Michael W. Caldwell (2018). "The smallest-known neonate individual of Tylosaurus (Mosasauridae, Tylosaurinae) sheds new light on the tylosaurine rostrum and heterochrony". Journal of Vertebrate Paleontology. 38 (5): e1510835. doi:10.1080/02724634.2018.1510835. S2CID 91852673.
  28. ^ Filipe O. Da Silva; Anne-Claire Fabre; Yoland Savriama; Joni Ollonen; Kristin Mahlow; Anthony Herrel; Johannes Müller; Nicolas Di-Poï (2018). "The ecological origins of snakes as revealed by skull evolution". Nature Communications. 9 (1): Article number 376. Bibcode:2018NatCo...9..376D. doi:10.1038/s41467-017-02788-3. PMC 5785544. PMID 29371624.
  29. ^ Holger Petermann; Jacques A. Gauthier (2018). "Fingerprinting snakes: paleontological and paleoecological implications of zygantral growth rings in Serpentes". PeerJ. 6: e4819. doi:10.7717/peerj.4819. PMC 5971835. PMID 29844972.
  30. ^ Alessandro Palci; Mark N. Hutchinson; Michael W. Caldwell; John D. Scanlon; Michael S. Y. Lee (2018). "Palaeoecological inferences for the fossil Australian snakes Yurlunggur and Wonambi (Serpentes, Madtsoiidae)". Royal Society Open Science. 5 (3): 172012. Bibcode:2018RSOS....572012P. doi:10.1098/rsos.172012. PMC 5882723. PMID 29657799.
  31. ^ Laura N. Triviño; Adriana M. Albino; María T. Dozo; Jorge D. Williams (2018). "First natural endocranial cast of a fossil snake (Cretaceous of Patagonia, Argentina)". The Anatomical Record. 301 (1): 9–20. doi:10.1002/ar.23686. PMID 28921909.
  32. ^ Silvio Onary; Annie S. Hsiou (2018). "Systematic revision of the early Miocene fossil Pseudoepicrates (Serpentes: Boidae): implications for the evolution and historical biogeography of the West Indian boid snakes (Chilabothrus)". Zoological Journal of the Linnean Society. 184 (2): 453–470. doi:10.1093/zoolinnean/zly002. S2CID 89972738.
  33. ^ Silvio Onary; Ascanio D. Rincón; Annie S. Hsiou (2018). "Fossil snakes (Squamata, Serpentes) from the tar pits of Venezuela: taxonomic, palaeoenvironmental, and palaeobiogeographical implications for the North of South America during the Cenozoic/Quaternary boundary". PeerJ. 6: e5402. doi:10.7717/peerj.5402. PMC 6097493. PMID 30128192.
  34. ^ Adriana María Albino; Bruce Rothschild; Jorge D. Carrillo-Briceño; James M. Neenan (2018). "Spondyloarthropathy in vertebrae of the aquatic Cretaceous snake Lunaophis aquaticus, and its first recognition in modern snakes". The Science of Nature. 105 (9–10): Article 51. Bibcode:2018SciNa.105...51A. doi:10.1007/s00114-018-1576-7. PMID 30291451. S2CID 52923059.
  35. ^ Jason J. Head; Johannes Müller (2018). "Squamate reptiles from Kanapoi: Faunal evidence for hominin paleoenvironments". Journal of Human Evolution. 140: Article 102451. doi:10.1016/j.jhevol.2018.01.007. PMID 29910043. S2CID 49268552.
  36. ^ Jacob A. McCartney; Eric M. Roberts; Leif Tapanila; Maureen A. O’Leary (2018). "Large palaeophiid and nigerophiid snakes from Paleogene Trans-Saharan Seaway deposits of Mali". Acta Palaeontologica Polonica. 63 (2): 207–220. doi:10.4202/app.00442.2017.
  37. ^ Adriana María Albino (2018). "New macrostomatan snake from the Paleogene of northwestern Argentina". Geobios. 51 (3): 175–179. doi:10.1016/j.geobios.2018.04.005. S2CID 133991371.
  38. ^ Jozef Klembara; Michael Rummel (2018). "New material of Ophisaurus, Anguis and Pseudopus (Squamata, Anguidae, Anguinae) from the Miocene of the Czech Republic and Germany and systematic revision and palaeobiogeography of the Cenozoic Anguinae". Geological Magazine. 155 (1): 20–44. Bibcode:2018GeoM..155...20K. doi:10.1017/S0016756816000753. S2CID 132414700.
  39. ^ J. D. Daza; A. M. Bauer; E. L. Stanley; A. Bolet; B. Dickson; J. B. Losos (2018). "An enigmatic miniaturized and attenuate whole lizard from the mid-Cretaceous amber of Myanmar" (PDF). Breviora. 563: 1–18. doi:10.3099/MCZ49.1. hdl:1983/0955fcf4-a32a-4498-b920-1421dcea67de. S2CID 91589111.
  40. ^ Romain Vullo; Jean-Claude Rage (2018). "The first Gondwanan borioteiioid lizard and the mid-Cretaceous dispersal event between North America and Africa". The Science of Nature. 105 (11–12): Article 61. Bibcode:2018SciNa.105...61V. doi:10.1007/s00114-018-1588-3. PMID 30291449. S2CID 52924052.
  41. ^ Corentin Bochaton; Salvador Bailon (2018). "A new fossil species of Boa Linnaeus, 1758 (Squamata, Boidae), from the Pleistocene of Marie-Galante Island (French West Indies)". Journal of Vertebrate Paleontology. 38 (3): e1462829. doi:10.1080/02724634.2018.1462829. S2CID 89660239.
  42. ^ Ana B. Quadros; Pablo Chafrat; Hussam Zaher (2018). "A new teiid lizard of the genus Callopistes Gravenhorst, 1838 (Squamata, Teiidae), from the lower Miocene of Argentina" (PDF). Journal of Vertebrate Paleontology. 38 (4): (1)–(18). doi:10.1080/02724634.2018.1484754. S2CID 91195492.
  43. ^ Andrej Čerňanský; Juan D. Daza; Aaron M. Bauer (2018). "Geckos from the middle Miocene of Devínska Nová Ves (Slovakia): new material and a review of the previous record". Swiss Journal of Geosciences. 111 (1–2): 183–190. doi:10.1007/s00015-017-0292-1. S2CID 135177121.
  44. ^ Ilaria Paparella; Alessandro Palci; Umberto Nicosia; Michael W. Caldwell (2018). "A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy". Royal Society Open Science. 5 (6): 172411. Bibcode:2018RSOS....572411P. doi:10.1098/rsos.172411. PMC 6030324. PMID 30110414.
  45. ^ Robert M. Sullivan; Liping Dong (2018). "Stenoplacosaurus mongoliensis, a new generic name for "Placosaurus" mongoliensis (Anguidae, Glyptosaurinae) from the Shara Murun Formation, Nei Mongol (Inner Mongolia), China)". New Mexico Museum of Natural History and Science Bulletin. 79: 691–694.
  46. ^ V. R. Alifanov (2018). "A new platynotan lizard (Parasaniwidae, Anguimorpha) from the Late Paleocene of southern Mongolia". Paleontological Journal. 52 (12): 1432–1435. doi:10.1134/S0031030118120067. S2CID 206839397.
  47. ^ Paulina Jiménez-Huidobro; Michael W. Caldwell; Ilaria Paparella; Timon S. Bullard (2018). "A new species of tylosaurine mosasaur from the upper Campanian Bearpaw Formation of Saskatchewan, Canada". Journal of Systematic Palaeontology. 17 (10): 849–864. doi:10.1080/14772019.2018.1471744. S2CID 90533033.
  48. ^ Lida Xing; Michael W. Caldwell; Rui Chen; Randall L. Nydam; Alessandro Palci; Tiago R. Simões; Ryan C. McKellar; Michael S. Y. Lee; Ye Liu; Hongliang Shi; Kuan Wang; Ming Bai (2018). "A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar". Science Advances. 4 (7): eaat5042. Bibcode:2018SciA....4.5042X. doi:10.1126/sciadv.aat5042. PMC 6051735. PMID 30035227.
  49. ^ Ryosuke Motani; Jiandong Huang; Da-yong Jiang; Andrea Tintori; Olivier Rieppel; Hailu You; Yuan-chao Hu; Rong Zhang (2018). "Separating sexual dimorphism from other morphological variation in a specimen complex of fossil marine reptiles (Reptilia, Ichthyosauriformes, Chaohusaurus)". Scientific Reports. 8 (1): Article number 14978. Bibcode:2018NatSR...814978M. doi:10.1038/s41598-018-33302-4. PMC 6175944. PMID 30297861.
  50. ^ J. M. Pardo-Pérez; B. P. Kear; M. Gómez; M. Moroni; E. E. Maxwell (2018). "Ichthyosaurian palaeopathology: evidence of injury and disease in fossil 'fish lizards'". Journal of Zoology. 304 (1): 21–33. doi:10.1111/jzo.12517.
  51. ^ Alexandra Houssaye; Yasuhisa Nakajima; P. Martin Sander (2018). "Structural, functional, and physiological signals in ichthyosaur vertebral centrum microanatomy and histology". Geodiversitas. 40 (7): 161–170. doi:10.5252/geodiversitas2018v40a7. S2CID 56134834.
  52. ^ Victoria Sjøholt Engelschiøn; Lene Liebe Delsett; Aubrey Jane Roberts; Jørn H. Hurum (2018). "Large-sized ichthyosaurs from the Lower Saurian niveau of the Vikinghøgda Formation (Early Triassic), Marmierfjellet, Spitsbergen". Norwegian Journal of Geology. 98 (2): 239–265. doi:10.17850/njg98-2-05. S2CID 135275680.
  53. ^ Dean R. Lomax; Paul De la Salle; Judy A. Massare; Ramues Gallois (2018). "A giant Late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff 'dinosaurian' bones". PLOS ONE. 13 (4): e0194742. Bibcode:2018PLoSO..1394742L. doi:10.1371/journal.pone.0194742. PMC 5890986. PMID 29630618.
  54. ^ Marta S. Fernández; Laura Piñuela; José Carlos García-Ramos (2018). "First report of Leptonectes (Ichthyosauria: Leptonectidae) from the Lower Jurassic (Pliensbachian) of Asturias, northern Spain". Palaeontologia Electronica. 21 (2): Article number 21.2.29A. doi:10.26879/802.
  55. ^ M. J. Boyd; D. R. Lomax (2018). "The youngest occurrence of ichthyosaur embryos in the UK: A new specimen from the Early Jurassic (Toarcian) of Yorkshire". Proceedings of the Yorkshire Geological Society. 62 (2): 77–82. doi:10.1144/pygs2017-008.
  56. ^ Darío G. Lazo; Marianella Talevi; Cecilia S. Cataldo; Beatriz Aguirre-Urreta; Marta S. Fernández (2018). "Description of ichthyosaur remains from the Lower Cretaceous Agrio Formation (Neuquén Basin, west-central Argentina) and their paleobiological implications". Cretaceous Research. 89: 8–21. doi:10.1016/j.cretres.2018.02.019. S2CID 133798666.
  57. ^ Inghild Økland; Lene Liebe Delsett; Aubrey Jane Roberts; Jørn H. Hurum (2018). "A Phalarodon fraasi (Ichthyosauria: Mixosauridae) from the Middle Triassic of Svalbard". Norwegian Journal of Geology. 98 (2): 267–288. doi:10.17850/njg98-2-06. S2CID 132590633.
  58. ^ Erin E. Maxwell (2018). "Redescription of the 'lost' holotype of Suevoleviathan integer (Bronn, 1844) (Reptilia: Ichthyosauria)". Journal of Vertebrate Paleontology. 38 (2): e1439833. doi:10.1080/02724634.2018.1439833. S2CID 91013635.
  59. ^ Judith M. Pardo-Pérez; Benjamin P. Kear; Heinrich Mallison; Marcelo Gómez; Manuel Moroni; Erin E. Maxwell (2018). "Pathological survey on Temnodontosaurus from the Early Jurassic of southern Germany". PLOS ONE. 13 (10): e0204951. Bibcode:2018PLoSO..1304951P. doi:10.1371/journal.pone.0204951. PMC 6200200. PMID 30356279.
  60. ^ Dean R. Lomax; Judy A. Massare (2018). "A second specimen of Protoichthyosaurus applebyi (Reptilia: Ichthyosauria) and additional information on the genus and species". Paludicola. 11 (4): 164–178.
  61. ^ Judy A. Massare; Dean R. Lomax (2018). "A taxonomic reassessment of Ichthyosaurus communis and I. intermedius and a revised diagnosis for the genus". Journal of Systematic Palaeontology. 16 (3): 263–277. doi:10.1080/14772019.2017.1291116. S2CID 90178113.
  62. ^ Johan Lindgren; Peter Sjövall; Volker Thiel; Wenxia Zheng; Shosuke Ito; Kazumasa Wakamatsu; Rolf Hauff; Benjamin P. Kear; Anders Engdahl; Carl Alwmark; Mats E. Eriksson; Martin Jarenmark; Sven Sachs; Per E. Ahlberg; Federica Marone; Takeo Kuriyama; Ola Gustafsson; Per Malmberg; Aurélien Thomen; Irene Rodríguez-Meizoso; Per Uvdal; Makoto Ojika; Mary H. Schweitzer (2018). "Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur". Nature. 564 (7736): 359–365. Bibcode:2018Natur.564..359L. doi:10.1038/s41586-018-0775-x. PMID 30518862. S2CID 54458324.
  63. ^ Daniel Tyborowski; Piotr Skrzycki; Marek Dec (2018). "Internal structure of ichthyosaur rostrum from the Upper Jurassic of Poland with comments on ecomorphological adaptations of ophthalmosaurid skull". Historical Biology: An International Journal of Paleobiology. 32 (7): 966–975. doi:10.1080/08912963.2018.1559308. S2CID 92555385.
  64. ^ Lene Liebe Delsett; Patrick Scott Druckenmiller; Aubrey Jane Roberts; Jørn Harald Hurum (2018). "A new specimen of Palvennia hoybergeti: implications for cranial and pectoral girdle anatomy in ophthalmosaurid ichthyosaurs". PeerJ. 6: e5776. doi:10.7717/peerj.5776. PMC 6187996. PMID 30345178.
  65. ^ Benjamin C. Moon; Angela M. Kirton (2018). "Ichthyosaurs of the British Middle and Upper Jurassic. Part 2. Brachypterygius, Nannopterygius, Macropterygius and Taxa invalida". Monographs of the Palaeontographical Society. 172 (650): 85–197. doi:10.1080/02693445.2018.1468139. hdl:1983/a003f49d-b8ba-4ff6-abba-f1444147633a. S2CID 133537170.
  66. ^ Corinna V. Fleischle; Tanja Wintrich; P. Martin Sander (2018). "Quantitative histological models suggest endothermy in plesiosaurs". PeerJ. 6: e4955. doi:10.7717/peerj.4955. PMC 5994164. PMID 29892509.
  67. ^ Nicole Klein; Eva Maria Griebeler (2018). "Growth patterns, sexual dimorphism, and maturation modeled in Pachypleurosauria from Middle Triassic of central Europe (Diapsida: Sauropterygia)". Fossil Record. 21 (1): 137–157. doi:10.5194/fr-21-137-2018.
  68. ^ Dawid Surmik; Tomasz Szczygielski; Katarzyna Janiszewska; Bruce M. Rothschild (2018). "Tuberculosis-like respiratory infection in 245-million-year-old marine reptile suggested by bone pathologies". Royal Society Open Science. 5 (6): 180225. Bibcode:2018RSOS....580225S. doi:10.1098/rsos.180225. PMC 6030318. PMID 30110474.
  69. ^ Carlos De Miguel Chaves; Francisco Ortega; Adán Pérez-García (2018). "Cranial variability of the European Middle Triassic sauropterygian Simosaurus gaillardoti". Acta Palaeontologica Polonica. 63 (2): 315–326. doi:10.4202/app.00471.2018.
  70. ^ Dennis F. A. E. Voeten; Tobias Reich; Ricardo Araújo; Torsten M. Scheyer (2018). "Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia". PLOS ONE. 13 (1): e0188509. Bibcode:2018PLoSO..1388509V. doi:10.1371/journal.pone.0188509. PMC 5751976. PMID 29298295.
  71. ^ Sven Sachs; Jahn J. Hornung; Jens N. Lallensack; Benjamin P. Kear (2018). "First evidence of a large predatory plesiosaurian from the Lower Cretaceous non-marine 'Wealden facies' deposits of northwestern Germany". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 501–508. doi:10.1080/03115518.2017.1373150. S2CID 134114013.
  72. ^ Jose P. O’Gorman; Soledad Gouiric-Cavalli; Roberto A. Scasso; Marcelo Reguero; Juan J. Moly; Leonel Acosta-Burlaille (2018). "A Late Jurassic plesiosaur in Antarctica: Evidence of the dispersion of marine fauna through the Trans-Erythraean Seaway?". Comptes Rendus Palevol. 17 (3): 158–165. doi:10.1016/j.crpv.2017.10.005.
  73. ^ Nikolay G. Zverkov; Valentin Fischer; Daniel Madzia; Roger B.J. Benson (2018). "Increased pliosaurid dental disparity across the Jurassic–Cretaceous transition". Palaeontology. 61 (6): 825–846. doi:10.1111/pala.12367. hdl:2268/221241.
  74. ^ Timothy Holland (2018). "The mandible of Kronosaurus queenslandicus Longman, 1924 (Pliosauridae, Brachaucheniinae), from the Lower Cretaceous of Northwest Queensland, Australia". Journal of Vertebrate Paleontology. 38 (5): e1511569. doi:10.1080/02724634.2018.1511569. S2CID 91599158.
  75. ^ A. Yu. Berezin (2018). "Craniology of the plesiosaur Abyssosaurus nataliae Berezin (Sauropterygia, Plesiosauria) from the Lower Cretaceous of the Central Russian Platform". Paleontological Journal. 52 (3): 328–341. doi:10.1134/S0031030118030036. S2CID 91151554.
  76. ^ Bruce M. Rothschild; Neil D.L. Clark; Clare M. Clark (2018). "Evidence for survival in a Middle Jurassic plesiosaur with a humeral pathology: What can we infer of plesiosaur behaviour?". Palaeontologia Electronica. 21 (1): Article number 21.1.13A. doi:10.26879/719.
  77. ^ Ramon S. Nagesan; Donald M. Henderson; Jason S. Anderson (2018). "A method for deducing neck mobility in plesiosaurs, using the exceptionally preserved Nichollssaura borealis". Royal Society Open Science. 5 (8): 172307. Bibcode:2018RSOS....572307N. doi:10.1098/rsos.172307. PMC 6124041. PMID 30224996.
  78. ^ V. Fischer; R. B. J. Benson; P. S. Druckenmiller; H. F. Ketchum; N. Bardet (2018). "The evolutionary history of polycotylid plesiosaurians". Royal Society Open Science. 5 (3): 172177. Bibcode:2018RSOS....572177F. doi:10.1098/rsos.172177. PMC 5882735. PMID 29657811.
  79. ^ Rémi Allemand; Nathalie Bardet; Alexandra Houssaye; Peggy Vincent (2018). "New plesiosaurian specimens (Reptilia, Plesiosauria) from the Upper Cretaceous (Turonian) of Goulmima (Southern Morocco)". Cretaceous Research. 82: 83–98. doi:10.1016/j.cretres.2017.09.017.
  80. ^ Rodrigo A. Otero; José P. O'Gorman; William L. Moisley; Marianna Terezow; Joseph McKee (2018). "A juvenile Tuarangisaurus keyesi Wiffen and Moisley 1986 (Plesiosauria, Elasmosauridae) from the Upper Cretaceous of New Zealand, with remarks on its skull ontogeny". Cretaceous Research. 85: 214–231. doi:10.1016/j.cretres.2017.09.007.
  81. ^ Nikolay G. Zverkov; Alexander O. Averianov; Evgeny V. Popov (2018). "Basicranium of an elasmosaurid plesiosaur from the Campanian of European Russia". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 528–542. doi:10.1080/03115518.2017.1302508. S2CID 132125319.
  82. ^ Rodrigo A. Otero; Sergio Soto-Acuña; Frank R. O'keefe (2018). "Osteology of Aristonectes quiriquinensis (Elasmosauridae, Aristonectinae) from the upper Maastrichtian of central Chile". Journal of Vertebrate Paleontology. 38 (1): e1408638. doi:10.1080/02724634.2017.1408638. S2CID 90977078.
  83. ^ José P. O'Gorman; Rodolfo A. Coria; Marcelo Reguero; Sergio Santillana; Thomas Mörs; Magalí Cárdenas (2018). "The first non-aristonectine elasmosaurid (Sauropterygia; Plesiosauria) cranial material from Antarctica: New data on the evolution of the elasmosaurid basicranium and palate". Cretaceous Research. 89: 248–263. doi:10.1016/j.cretres.2018.03.013. hdl:11336/83625. S2CID 134284389.
  84. ^ José P. O’Gorman; Karen M. Panzeri; Marta S. Fernández; Sergio Santillana; Juan J. Moly; Marcelo Reguero (2018). "A new elasmosaurid from the upper Maastrichtian López de Bertodano Formation: new data on weddellonectian diversity". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 575–586. doi:10.1080/03115518.2017.1339233. S2CID 134265841.
  85. ^ Sven Sachs; Johan Lindgren; Benjamin P. Kear (2018). "Reassessment of the Styxosaurus snowii (Williston, 1890) holotype specimen and its implications for elasmosaurid plesiosaurian interrelationships". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 560–574. doi:10.1080/03115518.2018.1508613. S2CID 134569623.
  86. ^ Sven Sachs; Benjamin P. Kear (2018). "A rare new Pliensbachian plesiosaurian from the Amaltheenton Formation of Bielefeld in northwestern Germany". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 487–500. doi:10.1080/03115518.2017.1367419. S2CID 133784655.
  87. ^ Carlos de Miguel Chaves; Francisco Ortega; Adán Pérez‐García (2018). "New highly pachyostotic nothosauroid interpreted as a filter-feeding Triassic marine reptile". Biology Letters. 14 (8): 20180130. doi:10.1098/rsbl.2018.0130. PMC 6127125. PMID 30068541.
  88. ^ Carlos de Miguel Chaves; Francisco Ortega; Adán Pérez‐García (2018). "A new placodont from the Upper Triassic of Spain provides new insights on the acquisition of the specialized skull of Henodontidae". Papers in Palaeontology. 4 (4): 567–576. doi:10.1002/spp2.1218.
  89. ^ José P. O’Gorman; Zulma Gasparini; Luis A. Spalletti (2018). "A new Pliosaurus species (Sauropterygia, Plesiosauria) from the Upper Jurassic of Patagonia: new insights on the Tithonian morphological disparity of mandibular symphyseal morphology". Journal of Paleontology. 92 (2): 240–253. doi:10.1017/jpa.2017.82. S2CID 134813424.
  90. ^ María Eurídice Páramo-Fonseca; Cristian David Benavides-Cabra; Ingry Esmirna Gutiérrez (2018). "A new large pliosaurid from the Barremian (Lower Cretaceous) of Sáchica, Boyacá, Colombia". Earth Sciences Research Journal. 22 (4): 223–238. doi:10.15446/esrj.v22n4.69916. S2CID 135054193.
  91. ^ Evangelos Vlachos; Enrique Randolfe; Juliana Sterli; Juan M. Leardi (2018). "Changes in the diversity of turtles (Testudinata) in South America from the Late Triassic to the present". Ameghiniana. 55 (6): 619–643. doi:10.5710/AMGH.18.09.2018.3226. S2CID 133715424.
  92. ^ Asher J. Lichtig; Spencer G. Lucas; Hendrik Klein; David M. Lovelace (2018). "Triassic turtle tracks and the origin of turtles". Historical Biology: An International Journal of Paleobiology. 30 (8): 1112–1122. doi:10.1080/08912963.2017.1339037. S2CID 133893011.
  93. ^ Matías Reolid; Ana Márquez-Aliaga; Margarita Belinchón; Anna García-Forner; José Villena; Carlos Martínez-Pérez (2018). "Ichnological evidence of semi-aquatic locomotion in early turtles from eastern Iberia during the Carnian Humid Episode (Late Triassic)". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 450–461. Bibcode:2018PPP...490..450R. doi:10.1016/j.palaeo.2017.11.025.
  94. ^ Oliver A. López-Conde; Juliana Sterli; María L. Chavarría-Arellano; Donald B. Brinkman; Marisol Montellano-Ballesteros (2018). "Turtles from the Late Cretaceous (Campanian) of El Gallo Formation, Baja California, Mexico". Journal of South American Earth Sciences. 88: 693–699. Bibcode:2018JSAES..88..693L. doi:10.1016/j.jsames.2018.10.005. S2CID 134734488.
  95. ^ Frankie D. Jackson; Wenjie Zheng; Takuya Imai; Robert A. Jackson; Xingsheng Jin (2018). "Fossil eggs associated with a neoceratopsian (Mosaiceratops azumai) from the Upper Cretaceous Xiaguan Formation, Henan Province, China". Cretaceous Research. 91: 457–467. doi:10.1016/j.cretres.2018.06.020. S2CID 134734712.
  96. ^ Stephan Lautenschlager; Gabriel S. Ferreira; Ingmar Werneburg (2018). "Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions". Frontiers in Ecology and Evolution. 6: Article 7. doi:10.3389/fevo.2018.00007. S2CID 34277757.
  97. ^ Tomasz Szczygielski; Justyna Słowiak; Dawid Dróżdż (2018). "Shell variability in the stem turtles Proterochersis spp". PeerJ. 6: e6134. doi:10.7717/peerj.6134. PMC 6305121. PMID 30595986.
  98. ^ Adán Pérez-García; Vlad Codrea (2018). "New insights on the anatomy and systematics of Kallokibotion Nopcsa, 1923, the enigmatic uppermost Cretaceous basal turtle (stem Testudines) from Transylvania". Zoological Journal of the Linnean Society. 182 (2): 419–443. doi:10.1093/zoolinnean/zlx037.
  99. ^ Asher J. Lichtig; Spencer G. Lucas (2018). "The ecology of Meiolania platyceps, a Pleistocene turtle from Australia". New Mexico Museum of Natural History and Science Bulletin. 79: 363–368.
  100. ^ Gabriel S. Ferreira; Mario Bronzati; Max C. Langer; Juliana Sterli (2018). "Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)". Royal Society Open Science. 5 (3): 171773. Bibcode:2018RSOS....571773F. doi:10.1098/rsos.171773. PMC 5882704. PMID 29657780.
  101. ^ Adán Pérez-García (2018). "New information on the Cenomanian bothremydid turtle Algorachelus based on new, well-preserved material from Spain". Fossil Record. 21 (1): 119–135. doi:10.5194/fr-21-119-2018.
  102. ^ Adán Pérez García; Florias Mees; Thierry Smith (2018). "Shell anatomy of the African Paleocene bothremydid turtle Taphrosphys congolensis and systematic implications within Taphrosphyini". Historical Biology: An International Journal of Paleobiology. 32 (3): 376–385. doi:10.1080/08912963.2018.1497023. S2CID 92653709.
  103. ^ Adán Pérez-García (2018). "New insights on the only bothremydid turtle (Pleurodira) identified in the British record: Palemys bowerbankii new combination". Palaeontologia Electronica. 21 (2): Article number 21.2.28A. doi:10.26879/849.
  104. ^ J.M. Jannello; I.J. Maniel; E. Previtera; M.S. de la Fuente (2018). "Linderochelys rinconensis (Testudines: Pan-Chelidae) from the Upper Cretaceous of northern Patagonia: New insights from shell bone histology, morphology and diagenetic implications". Cretaceous Research. 83: 47–61. doi:10.1016/j.cretres.2017.05.011.
  105. ^ Ignacio J. Maniel; Marcelo S. de la Fuente; Juliana Sterli; Juan M. Jannello; J. Marcelo Krause (2018). "New remains of the aquatic turtle Hydromedusa casamayorensis (Pleurodira, Chelidae) from the middle Eocene of Patagonia: taxonomic validation and phylogenetic relationships". Papers in Palaeontology. 4 (4): 537–566. doi:10.1002/spp2.1117.
  106. ^ Walter G. Joyce; Virginie S. Volpato; Yann Rollot (2018). "The skull of the carettochelyid turtle Anosteira pulchra from the Eocene (Uintan) of Wyoming and the carotid canal system of carettochelyid turtles". Fossil Record. 21 (2): 301–310. doi:10.5194/fr-21-301-2018. S2CID 92601499.
  107. ^ Gabriel S. Ferreira; Saswati Bandyopadhyay; Walter G. Joyce (2018). "A taxonomic reassessment of Piramys auffenbergi, a neglected turtle from the late Miocene of Piram Island, Gujarat, India". PeerJ. 6: e5938. doi:10.7717/peerj.5938. PMC 6240434. PMID 30479901.
  108. ^ Yann Rollot; Tyler R. Lyson; Walter G. Joyce (2018). "A description of the skull of Eubaena cephalica (Hay, 1904) and new insights into the cranial circulation and innervation of baenid turtles" (PDF). Journal of Vertebrate Paleontology. 38 (3): e1474886. doi:10.1080/02724634.2018.1474886. S2CID 91024786.
  109. ^ Matthew J. Vavrek; Donald B. Brinkman (2018). "The first record of a trionychid turtle (Testudines: Trionychidae) from the Cretaceous of the Pacific Coast of North America". Vertebrate Anatomy Morphology Palaeontology. 5: 34–37. doi:10.18435/vamp29336.
  110. ^ Marcelo S. de la Fuente; Gerardo G. Zacarías; Evangelos Vlachos (2018). "A review of the fossil record of South American turtles of the clade Testudinoidea". Bulletin of the Peabody Museum of Natural History. 59 (2): 269–286. doi:10.3374/014.059.0201. S2CID 198151217.
  111. ^ Evangelos Vlachos; Márton Rabi (2018). "Total evidence analysis and body size evolution of extant and extinct tortoises (Testudines: Cryptodira: Pan-Testudinidae)". Cladistics. 34 (6): 652–683. doi:10.1111/cla.12227. PMID 34706483. S2CID 90619565.
  112. ^ Asher J. Lichtig; Spencer G. Lucas; Guillermo E. Alvarado (2018). "Reappraisal of the holotype of "Testudo" costarricensis, a tortoise supposedly from the Oligocene or lower Miocene of Costa Rica". Revista Geológica de América Central. 59: 41–49. doi:10.15517/rgac.v59i0.34156 (inactive 31 October 2021).{{cite journal}}: CS1 maint: DOI inactive as of October 2021 (link)
  113. ^ Akio Takahashi; Ren Hirayama; Hiroyuki Otsuka (2018). "Systematic revision of Manouria oyamai (Testudines, Testudinidae), based on new material from the Upper Pleistocene of Okinawajima Island, the Ryukyu Archipelago, Japan, and its paleogeographic implications". Journal of Vertebrate Paleontology. 38 (2): e1427594. doi:10.1080/02724634.2017.1427594. S2CID 90610517.
  114. ^ Natasha S. Vitek (2018). "Delineating modern variation from extinct morphology in the fossil record using shells of the Eastern Box Turtle (Terrapene carolina)". PLOS ONE. 13 (3): e0193437. Bibcode:2018PLoSO..1393437V. doi:10.1371/journal.pone.0193437. PMC 5841793. PMID 29513709.
  115. ^ Chase Doran Brownstein (2018). "The northernmost occurrence of Chelydra serpentina in the Eastern US during the Pleistocene". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. X: 13–19.
  116. ^ Isaure Scavezzoni; Valentin Fischer (2018). "Rhinochelys amaberti Moret (1935), a protostegid turtle from the Early Cretaceous of France". PeerJ. 6: e4594. doi:10.7717/peerj.4594. PMC 5898427. PMID 29666758.
  117. ^ Irena Raselli (2018). "Comparative cranial morphology of the Late Cretaceous protostegid sea turtle Desmatochelys lowii". PeerJ. 6: e5964. doi:10.7717/peerj.5964. PMC 6287587. PMID 30568851.
  118. ^ Andrew D. Gentry (2018). "Prionochelys matutina Zangerl, 1953 (Testudines: Pan-Cheloniidae) from the Late Cretaceous of the United States and the evolution of epithecal ossifications in marine turtles". PeerJ. 6: e5876. doi:10.7717/peerj.5876. PMC 6215699. PMID 30402356.
  119. ^ Paul V. Ullmann; Zachary M. Boles; Michael J. Knell (2018). "Insights into cranial morphology and intraspecific variation from a new subadult specimen of the pan-cheloniid turtle Euclastes wielandi Hay, 1908". PaleoBios. 35: ucmp_paleobios_42081.
  120. ^ Edwin Cadena; Juan Abella; Maria Gregori (2018). "The first Oligocene sea turtle (Pan-Cheloniidae) record of South America". PeerJ. 6: e4554. doi:10.7717/peerj.4554. PMC 5868478. PMID 29593944.
  121. ^ John G. Frazier; Valentina Azzarà; Olivia Munoz; Lapo Gianni Marcucci; Emilie Badel; Francesco Genchi; Maurizio Cattani; Maurizio Tosi; Massimo Delfino (2018). "Remains of Leatherback turtles, Dermochelys coriacea, at Mid-Late Holocene archaeological sites in coastal Oman: clues of past worlds". PeerJ. 6: e6123. doi:10.7717/peerj.6123. PMC 6301280. PMID 30588406.
  122. ^ a b Marc Godinot; Henri-Pierre Labarrère; Jorg Erfurt; Jens L. Franzen; Brigitte Lange-Badré; France de Lapparent de Broin; Dominique Vidalenc (2018). "Un nouveau gisement à vertébrés éocènes, Rouzilhac (MP 10-11), dans la série molassique d'Issel (Aude, France)". Revue de Paléobiologie, Genève. 37 (1): 141–333.
  123. ^ a b c d e Hans-Volker Karl (2018). "Die Schildkröten aus den Mitteleozänen Sedimenten des Eckfelder Maares mit taxonomischen Notizen zu Testudo eocaenica Hummel, 1935 (Mitteleozän, Deutschland, Rheinland-Pfalz, Vulkaneifel)". Mainzer Naturwissenschaftliches Archiv. 55: 61–95.
  124. ^ Jordan C. Mallon; Donald B. Brinkman (2018). "Basilemys morrinensis, a new species of nanhsiungchelyid turtle from the Horseshoe Canyon Formation (Upper Cretaceous) of Alberta, Canada". Journal of Vertebrate Paleontology. 38 (2): e1431922. doi:10.1080/02724634.2018.1431922. S2CID 89835139.
  125. ^ Nancy A. Albury; Richard Franz; Renato Rimoli; Phillip Lehman; Alfred L. Rosenberger (2018). "Fossil land tortoises (Testudines, Testudinidae) from the Dominican Republic, West Indies, with a description of a new species". American Museum Novitates (3904): 1–28. doi:10.1206/3904.1. hdl:2246/6903. S2CID 92186485.
  126. ^ France de Lapparent de Broin; Xabier Murelaga; Adán Pérez-García; Francesc Farrés; Jacint Altimiras (2018). "The turtles from the upper Eocene, Osona County (Ebro Basin, Catalonia, Spain): new material and its faunistic and environmental context". Fossil Record. 21 (2): 237–284. doi:10.5194/fr-21-237-2018. S2CID 55783731.
  127. ^ a b A. Pérez-García (2018). "New genera of Taphrosphyina (Pleurodira, Bothremydidae) for the French Maastrichtian "Tretosternum" ambiguum and the Peruvian Ypresian "Podocnemis" olssoni". Historical Biology: An International Journal of Paleobiology. 32 (4): 555–560. doi:10.1080/08912963.2018.1506779. S2CID 91369359.
  128. ^ Walter G. Joyce; Tyler R. Lyson; Joseph J.W. Sertich (2018). "A new species of trionychid turtle from the Upper Cretaceous (Campanian) Fruitland Formation of New Mexico, USA". Journal of Paleontology. 92 (6): 1107–1114. doi:10.1017/jpa.2018.30. S2CID 134161813.
  129. ^ Shuai Shao; Lan Li; Yang Yang; Chang-Fu Zhou (2018). "Hyperphalangy in a new sinemydid turtle from the Early Cretaceous Jehol Biota". PeerJ. 6: e5371. doi:10.7717/peerj.5371. PMC 6065475. PMID 30065899.
  130. ^ Evangelos Vlachos; Juliana Sterli; Katerina Vasileiadou; George Syrides (2018). "A new species of Mauremys (Testudines, Geoemydidae) from the late Miocene – Pliocene of Central Macedonia (northern Greece) with exceptionally wide vertebral scutes". Papers in Palaeontology. 5 (1): 177–195. doi:10.1002/spp2.1235. S2CID 135447778.
  131. ^ Tomasz Szczygielski; Daniel Tyborowski; Błażej Błażejowski (2018). "A new pancryptodiran turtle from the Late Jurassic of Poland and palaeobiology of early marine turtles". Geological Journal. 53 (3): 1215–1226. doi:10.1002/gj.2952.
  132. ^ Andrew D. Gentry; James F. Parham; Dana J. Ehret; Jun A. Ebersole (2018). "A new species of Peritresius Leidy, 1856 (Testudines: Pan-Cheloniidae) from the Late Cretaceous (Campanian) of Alabama, USA, and the occurrence of the genus within the Mississippi Embayment of North America". PLOS ONE. 13 (4): e0195651. Bibcode:2018PLoSO..1395651G. doi:10.1371/journal.pone.0195651. PMC 5906092. PMID 29668704.
  133. ^ Shu’an Ji; Xiaoyun Chen (2018). "A new Early Cretaceous turtle from Otog Qi, Inner Mongolia, China". Acta Geologica Sinica. 92 (4): 629–637.
  134. ^ Steven E. Jasinski (2018). "A new slider turtle (Testudines: Emydidae: Deirochelyinae: Trachemys) from the late Hemphillian (late Miocene/early Pliocene) of eastern Tennessee and the evolution of the deirochelyines". PeerJ. 6: e4338. doi:10.7717/peerj.4338. PMC 5815335. PMID 29456887.
  135. ^ Gabriel S. Ferreira; Fabiano V. Iori; Guilherme Hermanson; Max C. Langer (2018). "New turtle remains from the Late Cretaceous of Monte Alto-SP, Brazil, including cranial osteology, neuroanatomy and phylogenetic position of a new taxon". PalZ. 92 (3): 481–498. doi:10.1007/s12542-017-0397-x. S2CID 134701879.
  136. ^ Martín D. Ezcurra; Richard J. Butler (2018). "The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction". Proceedings of the Royal Society B: Biological Sciences. 285 (1880): 20180361. doi:10.1098/rspb.2018.0361. PMC 6015845. PMID 29899066.
  137. ^ Andrew S. Jones; Richard J. Butler (2018). "A new phylogenetic analysis of Phytosauria (Archosauria: Pseudosuchia) with the application of continuous and geometric morphometric character coding". PeerJ. 6: e5901. doi:10.7717/peerj.5901. PMC 6292387. PMID 30581656.
  138. ^ Michel Laurin; Graciela H. Piñeiro (2017). "A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes". Frontiers in Earth Science. 5: Article 88. Bibcode:2017FrEaS...5...88L. doi:10.3389/feart.2017.00088. S2CID 32426159.
  139. ^ Mark J. MacDougall; Sean P. Modesto; Neil Brocklehurst; Antoine Verrière; Robert R. Reisz; Jörg Fröbisch (2018). "Commentary: A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes". Frontiers in Earth Science. 6: Article 99. doi:10.3389/feart.2018.00099. S2CID 50778752.
  140. ^ Michel Laurin; Graciela Piñeiro (2018). "Response: Commentary: A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes". Frontiers in Earth Science. 6: Article 220. doi:10.3389/feart.2018.00220. S2CID 54434724.
  141. ^ Constanze Bickelmann; Linda A. Tsuji (2018). "A case study of developmental palaeontology in Stereosternum tumidum (Mesosauridae, Parareptilia)". Fossil Record. 21 (1): 109–118. doi:10.5194/fr-21-109-2018.
  142. ^ Pablo Nuñez Demarco; Melitta Meneghel; Michel Laurin; Graciela Piñeiro (2018). "Was Mesosaurus a fully aquatic reptile?". Frontiers in Ecology and Evolution. 6: Article 109. doi:10.3389/fevo.2018.00109. S2CID 50780720.
  143. ^ Yara Haridy; Mark J. Macdougall; Robert R. Reisz (2018). "The lower jaw of the Early Permian parareptile Delorhynchus, first evidence of multiple denticulate coronoids in a reptile". Zoological Journal of the Linnean Society. 184 (3): 791–803. doi:10.1093/zoolinnean/zlx085.
  144. ^ M. L. Turner; C. A. Sidor (2018). "Pathology in a Permian parareptile: congenital malformation of sacral vertebrae". Journal of Zoology. 304 (1): 13–20. doi:10.1111/jzo.12519.
  145. ^ Eduardo Silva-Neves; Sean Patrick Modesto; Sérgio Dias-da-Silva (2018). "A new, nearly complete skull of Procolophon trigoniceps Owen, 1876 from the Sanga do Cabral Supersequence, Lower Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. 32 (4): 574–582. doi:10.1080/08912963.2018.1512106. S2CID 91254321.
  146. ^ Alexander B. Bradley; Sterling J. Nesbitt (2018). "A possible new specimen of Ruhuhuaria reiszi from the Manda Beds (?Middle Triassic) of southern Tanzania and its implications for small sauropsids in the Triassic". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 88–95. doi:10.1080/02724634.2017.1393823. S2CID 90253725.
  147. ^ Nicholas J. Matzke; Randall B. Irmis (2018). "Including autapomorphies is important for paleontological tip-dating with clocklike data, but not with non-clock data". PeerJ. 6: e4553. doi:10.7717/peerj.4553. PMC 5890724. PMID 29637019.
  148. ^ A. R. H. LeBlanc; M. J. MacDougall; Y. Haridy; D. Scott; R. R. Reisz (2018). "Caudal autotomy as anti-predatory behaviour in Palaeozoic reptiles". Scientific Reports. 8 (1): Article number 3328. Bibcode:2018NatSR...8.3328L. doi:10.1038/s41598-018-21526-3. PMC 5838224. PMID 29507301.
  149. ^ ; Aaron R. H. LeBlanc; Robert R. Reisz (2018). "The Permian reptile Opisthodontosaurus carrolli: a model for acrodont tooth replacement and dental ontogeny". Journal of Anatomy. 232 (3): 371–382. doi:10.1111/joa.12754. PMC 5807956. PMID 29210080.
  150. ^ Ben T. Kligman; Adam D. Marsh; William G. Parker (2018). "First records of diapsid Palacrodon from the Norian, Late Triassic Chinle Formation of Arizona, and their biogeographic implications". Acta Palaeontologica Polonica. 63 (1): 117–127. doi:10.4202/app.00426.2017.
  151. ^ Terri J. Cleary; Roger B. J. Benson; Susan E. Evans; Paul M. Barrett (2018). "Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers". Royal Society Open Science. 5 (3): 171830. Bibcode:2018RSOS....571830C. doi:10.1098/rsos.171830. PMC 5882712. PMID 29657788.
  152. ^ Aileen O’Brien; David I. Whiteside; John E. A. Marshall (2018). "Anatomical study of two previously undescribed specimens of Clevosaurus hudsoni (Lepidosauria: Rhynchocephalia) from Cromhall Quarry, UK, aided by computed tomography, yields additional information on the skeleton and hitherto undescribed bones". Zoological Journal of the Linnean Society. 183 (1): 163–195. doi:10.1093/zoolinnean/zlx087.
  153. ^ Marc E. H. Jones; Peter W. Lucas; Abigail S. Tucker; Amy P. Watson; Joseph J. W. Sertich; John R. Foster; Ruth Williams; Ulf Garbe; Joseph J. Bevitt; Floriana Salvemini (2018). "Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile". Journal of the Royal Society Interface. 15 (143): 20180039. doi:10.1098/rsif.2018.0039. PMC 6030635. PMID 29899156.
  154. ^ Rainer R. Schoch; Hans-Dieter Sues (2018). "Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton". Journal of Systematic Palaeontology. 16 (11): 927–965. doi:10.1080/14772019.2017.1354936. S2CID 90014658.
  155. ^ Tiane Macedo De Oliveira; Daniel Oliveira; Cesar L. Schultz; Leonardo Kerber; Felipe L. Pinheiro (2018). "Tanystropheid archosauromorphs in the Lower Triassic of Gondwana". Acta Palaeontologica Polonica. 63 (4): 713–723. doi:10.4202/app.00489.2018.
  156. ^ Susan R. Beardmore; Heinz Furrer (2018). "Land or water: using taphonomic models to determine the lifestyle of the Triassic protorosaur Tanystropheus (Diapsida, Archosauromorpha)". Palaeobiodiversity and Palaeoenvironments. 98 (2): 243–258. doi:10.1007/s12549-017-0299-7. S2CID 133762329.
  157. ^ Silvio Renesto; Franco Saller (2018). "Evidences for a semi aquatic life style in the Triassic diapsid reptile Tanystropheus". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 23–34. doi:10.13130/2039-4942/9541.
  158. ^ Adriel R. Gentil; Martín D. Ezcurra (2018). "Reconstruction of the masticatory apparatus of the holotype of the rhynchosaur Hyperodapedon sanjuanensis (Sill, 1970) from the Late Triassic of Argentina: implications for the diagnosis of the species". Ameghiniana. 55 (2): 137–149. doi:10.5710/AMGH.17.10.2017.3132. S2CID 134557963.
  159. ^ Stephan N. F. Spiekman (2018). "A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Antarctica, its biogeographical implications and a taxonomic revision". Scientific Reports. 8 (1): Article number 17996. Bibcode:2018NatSR...817996S. doi:10.1038/s41598-018-36499-6. PMC 6301955. PMID 30573764.
  160. ^ Magdalena Borsuk-Białynicka (2018). "Diversity of diapsid fifth metatarsals from the Lower Triassic karst deposits of Czatkowice, southern Poland—functional and phylogenetic implications". Acta Palaeontologica Polonica. 63 (3): 417–434. doi:10.4202/app.00444.2017.
  161. ^ Emily Keeble; David I. Whiteside; Michael J. Benton (2018). "The terrestrial fauna of the Late Triassic Pant-y-ffynnon Quarry fissures, South Wales, UK and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia)" (PDF). Proceedings of the Geologists' Association. 129 (2): 99–119. doi:10.1016/j.pgeola.2017.11.001. hdl:1983/5afdc677-3ea0-4519-813d-6052ef8370ec.
  162. ^ a b Adam C. Pritchard; Jacques A. Gauthier; Michael Hanson; Gabriel S. Bever; Bhart-Anjan S. Bhullar (2018). "A tiny Triassic saurian from Connecticut and the early evolution of the diapsid feeding apparatus". Nature Communications. 9 (1): Article number 1213. Bibcode:2018NatCo...9.1213P. doi:10.1038/s41467-018-03508-1. PMC 5865133. PMID 29572441.
  163. ^ Torsten M. Scheyer; Stephan N. F. Spiekman; Hans-Dieter Sues; Martín D. Ezcurra; Richard J. Butler; Marc E. H. Jones (2020). "Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite". Royal Society Open Science. 7 (3): Article ID 192179. Bibcode:2020RSOS....792179S. doi:10.1098/rsos.192179. PMC 7137947. PMID 32269817.
  164. ^ Jun Liu; Gabriel S. Bever (2018). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: a new species of Elginia (Parareptilia, Pareiasauria)". Papers in Palaeontology. 4 (2): 197–209. doi:10.1002/spp2.1105.
  165. ^ Chun Li; Nicholas C. Fraser; Olivier Rieppel; Xiao-Chun Wu (2018). "A Triassic stem turtle with an edentulous beak". Nature. 560 (7719): 476–479. Bibcode:2018Natur.560..476L. doi:10.1038/s41586-018-0419-1. PMID 30135526. S2CID 52067286.
  166. ^ Jorge A. Herrera-Flores; Thomas L. Stubbs; Armin Elsler; Michael J. Benton (2018). "Taxonomic reassessment of Clevosaurus latidens Fraser, 1993 (Lepidosauria, Rhynchocephalia) and rhynchocephalian phylogeny based on parsimony and Bayesian inference". Journal of Paleontology. 92 (4): 734–742. doi:10.1017/jpa.2017.136. S2CID 90323832.
  167. ^ Rainer R. Schoch; Hans-Dieter Sues (2018). "A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic relationships". Journal of Vertebrate Paleontology. 38 (2): e1444619. doi:10.1080/02724634.2018.1444619. S2CID 89753030.
  168. ^ Sean P. Modesto; Diane Scott; Robert R. Reisz (2018). "A new small captorhinid reptile from the lower Permian of Oklahoma and resource partitioning among small captorhinids in the Richards Spur fauna". Papers in Palaeontology. 4 (2): 293–307. doi:10.1002/spp2.1109.
  169. ^ Linda A. Tsuji (2018). "Mandaphon nadra, gen. et sp. nov., a new procolophonid from the Manda Beds of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 80–87. doi:10.1080/02724634.2017.1413383. S2CID 89704713.
  170. ^ Thomas Perner (2018). "A new interesting archosaur from the Ladinian (Middle Triassic) of the Dolomites (Northern Italy)". In Thomas Perner; Michael Wachtler (eds.). Some new and exciting Triassic Archosauria from the Dolomites (Northern Italy). pp. 1–8.
Retrieved from ""