Ammonia borane

From Wikipedia, the free encyclopedia
Ammonia borane
Ball and stick model of ammonia borane
Names
IUPAC name
Ammoniotrihydroborate[citation needed]
Other names
Borazane[citation needed]
Identifiers
  • 13774-81-7 checkY
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.170.890 Edit this at Wikidata
EC Number
  • 642-983-4
UNII
Properties
BNH
6
Molar mass 30.865 g mol−1
Appearance Colorless crystals
Density 780 mg mL−1
Melting point 104 °C (219 °F; 377 K)
Structure
I4mm, tetragonal
Tetragonal at B and N
Tetrahydral at B and N
Dipole moment
5.2 D
Hazards
GHS pictograms GHS02: FlammableGHS07: Harmful
GHS Signal word Danger
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  (what is checkY☒N ?)
Infobox references

Ammonia borane (also systematically named amminetrihydridoboron), also called borazane, is the chemical compound with the formula H3NBH3. The colourless or white solid is the simplest molecular boron-nitrogen-hydride compound. It has attracted attention as a source of hydrogen fuel, but is otherwise primarily of academic interest.

Synthesis[]

Reaction of diborane with ammonia mainly gives the diammoniate salt [H2B(NH3)2]+(BH4). Ammonia borane is the main product when an adduct of borane is employed in place of diborane:[1]

BH3(THF) + NH3 → BH3NH3 + THF

Properties and structure[]

The molecule adopts a structure similar to that of ethane, with which it is isoelectronic. The B−N distance is 1.58(2) Å. The B−H and N−H distances are 1.15 and 0.96 Å, respectively. Its similarity to ethane is tenuous since ammonia borane is a solid and ethane is a gas: their melting points differing by 284 °C. This difference is consistent with the highly polar nature of ammonia borane. The H atoms attached to boron are hydridic and those attached to nitrogen are somewhat acidic.

Resonance structures of ammonia-borane

The structure of the solid indicates a close association of the NH and the BH centers. The closest H−H distance is 1.990 Å, which can be compared with the H−H bonding distance of 0.74 Å. This interaction is called a dihydrogen bond.[2][3] The original crystallographic analysis of this compound reversed the assignments of B and N. The updated structure was arrived at with improved data using the technique of neutron diffraction that allowed the hydrogen atoms to be located with greater precision.

Part of the crystal structure of ammonia borane[2]
Comparison of bond lengths in simple boron-nitrogen hydrides
Molecule Ammonia borane[4] [5] Iminoborane[6]
Formula BNH6 BNH4 BNH2
Class amine-borane iminoborane
Analogous hydrocarbon ethane ethylene acetylene
Analogous hydrocarbon class alkane alkene alkyne
Structure Ammonia-borane-dimensions-MW-1983-2D.png Aminoborane-dimensions-MW-1987-2D.png Iminoborane-dimensions-IR-1987-2D.png
Ball-and-stick model Ammonia-borane-from-xtal-3D-balls.png Aminoborane-from-MW-1987-double-3D-balls.png Iminoborane-from-IR-1987-triple-3D-balls.png
Hybridisation of boron and nitrogen sp3 sp2 sp
B-N bond length 1.658 Å 1.391 Å 1.238 Å
Proportion of B-N single bond 100% 84% 75%
Structure determination method microwave spectroscopy microwave spectroscopy infrared spectroscopy

Uses[]

Ammonia borane has been suggested as a storage medium for hydrogen, e.g. for when the gas is used to fuel motor vehicles. It can be made to release hydrogen on heating, being polymerized first to (NH2BH2)n, then to (NHBH)n,[7] which ultimately decomposes to boron nitride (BN) at temperatures above 1000 °C.[8] It is more hydrogen-dense than liquid hydrogen and also able to exist at normal temperatures and pressures.[9]

Ammonia borane finds some use in organic synthesis as an air-stable derivative of diborane.[10]

Analogous amine-boranes[]

Many analogues have been prepared from primary, secondary, and even tertiary amines:

  • Borane tert-butylamine (tBuNH2→BH3)
  • Borane trimethylamine (Me3N→BH3)
  • Borane isopropylamine (iPrNH2→BH3)

The first amine adduct of borane was derived from trimethylamine. Borane tert-butylamine complex is prepared by the reaction of sodium borohydride with t-butylammonium chloride. Generally adduct are more robust with more basic amines. Variations are also possible for the boron component, although primary and secondary boranes are less common.[11]

Additionally, many complexes of borane have been prepared, including borane dimethylsulfide (Me2S→BH3) and borane–tetrahydrofuran (THF→BH3).

References[]

  1. ^ Shore, S. G.; Boddeker, K. W. (1964). "Large Scale Synthesis of H2B(NH3)2+BH4 and H3NBH3". Inorganic Chemistry. 3 (6): 914–915. doi:10.1021/ic50016a038.
  2. ^ Jump up to: a b Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M.; Richardson, T. B.; Crabtree, R. H. (1999). "Study of the N−H···H−B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction". Journal of the American Chemical Society. 121 (27): 6337–6343. doi:10.1021/ja9825332.
  3. ^ Boese, R.; Niederprüm, N.; Bläser, D. (1992). Maksic, Z. B.; Eckert-Masic, M. (eds.). Molecules in Natural Science and Medicine. Chichester, England: Ellis Horwood. ISBN 978-0135615980.
  4. ^ Thorne, L. R.; Suenram, R. D.; Lovas, F. J. (1983). "Microwave spectrum, torsional barrier, and structure of BH3NH3". J. Chem. Phys. 78 (1): 167–171. doi:10.1063/1.444528.
  5. ^ Sugie, Masaaki; Takeo, Harutoshi; Matsumura, Chi (1987). "Microwave spectrum and molecular structure of aminoborane, BH2NH2". J. Mol. Spectrosc. 123 (2): 286–292. doi:10.1016/0022-2852(87)90279-7.
  6. ^ Kawashima, Yoshiyuki (1987). "Detection of HBNH by infrared diode laser spectroscopy". J. Chem. Phys. 87: 6331–6333. doi:10.1063/1.453462.
  7. ^ Gutowski, M.; Autrey, T. (2006). "Features: Hydrogen gets onboard". Chemistry World. 3 (3).
  8. ^ Frueh, S.; Kellett, R.; Mallery, C.; Molter; T.; Willis, W. S.; King'ondu, C.; Suib, S. L. (2011). "Pyrolytic Decomposition of Ammonia Borane to Boron Nitride". Inorganic Chemistry. 50 (3): 783–792. doi:10.1021/ic101020k. PMID 21182274.
  9. ^ Stephens, F. H.; Pons, V.; Baker, R. T. (2007). "Ammonia–Borane: The Hydrogen Source par excellence?". Dalton Transactions. 2007 (25): 2613–2626. doi:10.1039/b703053c. PMID 17576485.
  10. ^ Andrews, Glenn C.; Neelamkavil, Santhosh F. (2008). "Borane–Ammonia". In Paquette, Leo A. (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons. doi:10.1002/047084289X.rb238.pub2. ISBN 0471936235.
  11. ^ Staubitz, Anne; Robertson, Alasdair P. M.; Manners, Ian (2010). "Ammonia-Borane and Related Compounds as Dihydrogen Sources". Chemical Reviews. 110 (7): 4079–4124. doi:10.1021/cr100088b. PMID 20672860.
Retrieved from ""