Enhanced weathering

From Wikipedia, the free encyclopedia

Enhanced weathering is weathering accelerated by spreading finely ground silicate rock, such as basalt, onto land or sea. This speeds up the chemical reactions between rocks, water and air; which remove carbon dioxide (CO2) from the atmosphere and store it permanently in solid carbonate minerals or ocean alkalinity.[1] The latter would also slow ocean acidification.

Although existing mine tailings[2] or alkaline industrial silicate minerals (such as steel slags, construction & demolition waste, or ash from biomass incineration) may be used at first,[3] mining more basalt might eventually be required to limit climate change.[4]

History[]

Enhanced weathering has been proposed for both terrestrial and ocean based carbon sequestration. Ocean methods are being tested by non-profit Project Vesta to see if they are environmentally and economically viable.[5][6]

In July 2020 a group of scientists assessed that the geoengineering technique of enhanced rock weathering – spreading finely crushed basalt on fields – has potential use for carbon dioxide removal by nations, identifying costs, opportunities and engineering challenges.[7][8]

Natural mineral weathering and ocean acidification mechanism[]

Stone split by frost weathering on the mountain path to the tongue of the Morteratsch glacier.
Role of carbonate in sea exchange of carbon dioxide.

Weathering is the natural process in which rocks and minerals are broken down and dissolved because of the action of water, ice, acids, salts, plants, animals, and changes in temperature.[9] It is both mechanical (breaking up the rocks - also called physical weathering or disaggregation) and chemical (changing the chemical compounds in the rocks).[9] Biological weathering is a form of weathering (mechanical and/or chemical) by plants, fungi or other living organisms.[9]

Chemical weathering can happen by different mechanism, depending mainly on the nature of the mineral involved: solution, hydration, hydrolysis and oxidation weathering.[10] Carbonation weathering is a particular type of solution weathering.[10]

Carbonate and silicate minerals are examples of minerals affected by carbonation weathering. When silicate or carbonate minerals are exposed to rainwater or groundwater, they slowly dissolve because of carbonation weathering: that is the water (H2O) and carbon dioxide (CO2) present in the atmosphere form carbonic acid (H2CO3) by the reaction:[9][11]

H2O + CO2 → H2CO3

This carbonic acid then attacks the mineral to form carbonate ions in solution with the unreacted water. Because of these two chemical reactions (carbonation and dissolution), mineral, water and carbon dioxide combine altering the chemical composition of minerals and removing CO2 from the atmosphere.

In particular, forsterite (a silicate mineral) is dissolved through the reaction:

Mg2SiO4(s) + 4H2CO3(aq) → 2Mg2+(aq) + 4HCO3(aq) + H4SiO4(aq)

where "(s)" indicates a substance in a solid state and "(aq)" indicates a substance in an aqueous solution.

Calcite (a carbonate mineral) is instead dissolved through the reaction:

CaCO3(s) + H2CO3(aq) → Ca2+(aq) + 2HCO3(aq)

Water with dissolved bicarbonate ions (HCO3) eventually ends up in the ocean,[11] where the bicarbonate ions are biomineralized to carbonate minerals for shells and skeletons through the reaction:

Ca2+ + 2HCO3 → CaCO3 + CO2 + H2O

The carbonate minerals then eventually sink from the ocean surface to the ocean floor.[11] Most of the carbonate is redissolved in the deep ocean as it sinks.

Over geological time periods these processes are thought to stabilise the Earth's climate.[12] The ratio of carbon dioxide in the atmosphere as a gas (CO2) to the quantity of carbon dioxide converted into carbonate is regulated by a chemical equilibrium: in case of a change of this equilibrium state, it takes theoretically (if no other alteration is happening during this time) thousand of years to establish a new equilibrium state.[11]

For silicate weathering the theoretical net effect of dissolution and precipitation is 1 mol of CO2 sequestered for every mol of Ca2+ or Mg2+ weathered out of the mineral. Given that some of the dissolved cations react with existing alkalinity in the solution to form CO32− ions, the ratio is not exactly 1:1 in natural systems but is a function of temperature and CO2 partial pressure. The net CO2 sequestration of carbonate weathering reaction and carbonate precipitation reaction is zero.[clarification needed]

Carbon-silicate cycle feedbacks.

Weathering and biological carbonate precipitation are thought to be only loosely coupled on short time periods (<1000 years). Therefore, an increase in both carbonate and silicate weathering with respect to carbonate precipitation will result in a buildup of alkalinity in the ocean.[clarification needed]

Terrestrial enhanced weathering[]

Enhanced weathering was initially used to refer specifically to the spreading of crushed silicate minerals on the land surface.[13][14] Biological activity in soils has been shown to promote the dissolution of silicate minerals,[15] but there is still uncertainty surrounding how quickly this may happen. As weathering rate is a function of saturation of the dissolving mineral in solution (decreasing to zero in fully saturated solutions), some have suggested that lack of rainfall may limit terrestrial enhanced weathering,[16] although others[17] suggest that secondary mineral formation or biological uptake may suppress saturation and promote weathering.

The amount of energy that is required for comminution depends on rate at which the minerals dissolve (less comminution is required for rapid mineral dissolution). A 2012 study suggested a large range in potential cost of enhanced weathering largely down to the uncertainty surrounding mineral dissolution rates.[18]

Oceanic enhanced weathering[]

To overcome the limitations of solution saturation and to use natural comminution of sand particles from wave energy, silicate minerals may be applied to coastal environments,[19] although the higher pH of seawater may substantially decrease the rate of dissolution,[20] and it is unclear how much comminution is possible from wave action.

Alternatively, the direct application of carbonate minerals to the up-welling regions of the ocean has been investigated.[21] Carbonate minerals are supersaturated in the surface ocean but are undersaturated in the deep ocean. In areas of up welling this undersaturated water is brought to the surface. While this technology will likely be cheap, the maximum annual CO2 sequestration potential is limited.

Transforming the carbonate minerals into oxides and spreading this material in the open ocean ('Ocean Liming') has been proposed as an alternative technology.[22] Here the carbonate mineral (CaCO3) is transformed into lime (CaO) through calcination. The energy requirements for this technology are substantial.

Mineral carbonation[]

The enhanced dissolution and carbonation of silicates ('mineral carbonation') was first proposed by Seifritz,[23] and developed initially by Lackner et al.[24] and further by the Albany Research Center.[25] This early research investigated the carbonation of extracted and crushed silicates at elevated temperatures (~180 °C) and partial pressures of CO2 (~15 MPa) inside controlled reactors ("ex-situ mineral carbonation"). Some research explores the potential of "in-situ mineral carbonation" in which the CO2 is injected into silicate rock formations to promote carbonate formation underground (see: CarbFix).

Mineral carbonation research has largely focused on the sequestration of CO2 from flue gas. It could be used for geoengineering if the source of CO2 was derived from the atmosphere, e.g. through direct air capture or biomass-CCS.

Electrolytic dissolution of silicate minerals[]

Where abundant electric surplus electricity is available the electrolytic dissolution of silicate minerals has been proposed[26] and experimentally shown. The process resembles the weathering of some minerals. In addition Hydrogen produced here would be a carbon-negative.[27]

Cost[]

In a 2020 techno-economical analysis, the cost of utilizing this method on cropland was estimated at US$80–180 per tonne of CO2. This is comparable with other methods of removing carbon dioxide from the atmosphere currently available (BECCS (US$100–200 per tonne of CO2)- Bio-Energy with Carbon Capture and Storage) and direct air capture and storage at large scale deployment and low-cost energy inputs (US$100–300 per tonne of CO2). In contrast, the cost of reforestation was estimated lower than US$100 per tonne of CO2.[28]

See also[]

  • Olivine#Uses

References[]

  1. ^ "Guest post: How 'enhanced weathering' could slow climate change and boost crop yields". Carbon Brief. 2018-02-19. Archived from the original on 2021-09-08. Retrieved 2021-11-03.
  2. ^ Power, Ian M.; Dipple, Gregory M.; Bradshaw, Peter M. D.; Harrison, Anna L. (2020-03-01). "Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada". International Journal of Greenhouse Gas Control. 94: 102895. doi:10.1016/j.ijggc.2019.102895. ISSN 1750-5836. S2CID 213320687.
  3. ^ Renforth, Phil (2019-03-28). "The negative emission potential of alkaline materials". Nature Communications. 10 (1): 1401. Bibcode:2019NatCo..10.1401R. doi:10.1038/s41467-019-09475-5. PMC 6438983. PMID 30923316.
  4. ^ Goll, Daniel S.; Ciais, Philippe; Amann, Thorben; Buermann, Wolfgang; Chang, Jinfeng; Eker, Sibel; Hartmann, Jens; Janssens, Ivan; Li, Wei; Obersteiner, Michael; Penuelas, Josep (August 2021). "Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock". Nature Geoscience. 14 (8): 545–549. Bibcode:2021NatGe..14..545G. doi:10.1038/s41561-021-00798-x. ISSN 1752-0908. S2CID 236438034. Archived from the original on 2021-10-26. Retrieved 2021-11-03.
  5. ^ Peters, Adele (2020-05-29). "Ever been to a green sand beach? The newest geohack to fight climate change". Fast Company. Archived from the original on 2020-10-29. Retrieved 2020-11-06.
  6. ^ Delbert, Caroline (2020-06-11). "How This Strange Green Sand Could Reverse Climate Change". Popular Mechanics. Archived from the original on 2020-10-12. Retrieved 2020-11-06.
  7. ^ "Applying rock dust to croplands could absorb up to 2 billion tonnes of CO2 from the atmosphere". phys.org. Archived from the original on 12 September 2020. Retrieved 28 August 2020.
  8. ^ Beerling, David J.; Kantzas, Euripides P.; Lomas, Mark R.; Wade, Peter; Eufrasio, Rafael M.; Renforth, Phil; Sarkar, Binoy; Andrews, M. Grace; James, Rachael H.; Pearce, Christopher R.; Mercure, Jean-Francois; Pollitt, Hector; Holden, Philip B.; Edwards, Neil R.; Khanna, Madhu; Koh, Lenny; Quegan, Shaun; Pidgeon, Nick F.; Janssens, Ivan A.; Hansen, James; Banwart, Steven A. (July 2020). "Potential for large-scale CO2 removal via enhanced rock weathering with croplands". Nature. 583 (7815): 242–248. Bibcode:2020Natur.583..242B. doi:10.1038/s41586-020-2448-9. ISSN 1476-4687. PMID 32641817. S2CID 220417075. Archived from the original on 16 July 2020. Retrieved 16 August 2020.
  9. ^ a b c d "National Geographic - Weathering". Archived from the original on 2017-01-25. Retrieved 2020-11-30.
  10. ^ a b "Brandon Vogt, "Rock Weathering"". Archived from the original on 2020-10-27. Retrieved 2020-11-30.
  11. ^ a b c d "Encyclopædia Britannica - Biological carbon cycle". Archived from the original on 2020-12-12. Retrieved 2020-11-30.
  12. ^ Berner, Robert A. Berner; Kothavala, Zavareth (2001). "GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time". American Journal of Science. 301 (2): 182–204. Bibcode:2001AmJS..301..182B. CiteSeerX 10.1.1.393.582. doi:10.2475/ajs.301.2.182.
  13. ^ Schuiling, R. D.; Krijgsman, P. (2006). "Enhanced Weathering: An Effective and Cheap Tool to Sequester CO2". Climatic Change. 74 (1–3): 349–54. Bibcode:2006ClCh...74..349S. doi:10.1007/s10584-005-3485-y. S2CID 131280491.
  14. ^ Manning, D. A. C. (2008). "Biological enhancement of soil carbonate precipitation: Passive removal of atmospheric CO2". Mineralogical Magazine. 72 (2): 639–49. Bibcode:2008MinM...72..639M. doi:10.1180/minmag.2008.072.2.639. S2CID 94528533.
  15. ^ Manning, David A. C.; Renforth, Phil (2013). "Passive Sequestration of Atmospheric CO2 through Coupled Plant-Mineral Reactions in Urban soils". Environmental Science & Technology. 47 (1): 135–41. Bibcode:2013EnST...47..135M. doi:10.1021/es301250j. PMID 22616942.
  16. ^ Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.; Schellnhuber, Hans-Joachim (2010). "Geoengineering potential of artificially enhanced silicate weathering of olivine". Proceedings of the National Academy of Sciences. 107 (47): 20228–33. Bibcode:2010EGUGA..12.6986K. doi:10.1073/pnas.1000545107. JSTOR 25756680. PMC 2996662. PMID 21059941.
  17. ^ Schuiling, Roelof D.; Wilson, Siobhan A.; Power, lan M. (2011). "Enhanced silicate weathering is not limited by silicic acid saturation". Proceedings of the National Academy of Sciences. 108 (12): E41. Bibcode:2011PNAS..108E..41S. doi:10.1073/pnas.1019024108. PMC 3064366. PMID 21368192.
  18. ^ Renforth, P. (2012). "The potential of enhanced weathering in the UK" (PDF). International Journal of Greenhouse Gas Control. 10: 229–43. doi:10.1016/j.ijggc.2012.06.011. Archived (PDF) from the original on 2020-12-05. Retrieved 2019-12-10.
  19. ^ Schuiling, R.D.; de Boer, P.L. (2010). "Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. Comment: Nature and laboratory models are different". International Journal of Greenhouse Gas Control. 4 (5): 855–6. doi:10.1016/j.ijggc.2010.04.012.
  20. ^ Hangx, Suzanne J.T.; Spiers, Christopher J. (2009). "Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability". International Journal of Greenhouse Gas Control. 3 (6): 757–67. doi:10.1016/j.ijggc.2009.07.001.
  21. ^ Harvey, L. D. D. (2008). "Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions". Journal of Geophysical Research. 113 (C4): C04028. Bibcode:2008JGRC..113.4028H. doi:10.1029/2007JC004373.
  22. ^ Kheshgi, Haroon S. (1995). "Sequestering atmospheric carbon dioxide by increasing ocean alkalinity". Energy. 20 (9): 915–22. doi:10.1016/0360-5442(95)00035-F.
  23. ^ Seifritz, W. (1990). "CO2 disposal by means of silicates". Nature. 345 (6275): 486. Bibcode:1990Natur.345..486S. doi:10.1038/345486b0. S2CID 38210921.
  24. ^ Lackner, Klaus S.; Wendt, Christopher H.; Butt, Darryl P.; Joyce, Edward L.; Sharp, David H. (1995). "Carbon dioxide disposal in carbonate minerals". Energy. 20 (11): 1153. doi:10.1016/0360-5442(95)00071-N.
  25. ^ O’Connor, W. K.; Dahlin, D. C.; Rush, G. E.; Gedermann, S. J.; Penner, L. R.; Nilsen, D. N. (March 15, 2005). Aqueous mineral carbonation, Final Report (PDF). National Energy Technology Laboratory. Archived (PDF) from the original on March 4, 2016. Retrieved December 29, 2015.[page needed]
  26. ^ Scott, Allan; Oze, Christopher; Shah, Vineet; Yang, Nan; Shanks, Barney; Cheeseman, Chris; Marshall, Aaron; Watson, Matthew (2021-02-04). "Transformation of abundant magnesium silicate minerals for enhanced CO2 sequestration". Communications Earth & Environment. 2 (1): 25. Bibcode:2021ComEE...2...25S. doi:10.1038/s43247-021-00099-6. ISSN 2662-4435. S2CID 231793974. Archived from the original on 2021-02-20. Retrieved 2021-11-03.
  27. ^ Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D. (2013-06-18). "Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production". Proceedings of the National Academy of Sciences. 110 (25): 10095–10100. Bibcode:2013PNAS..11010095R. doi:10.1073/pnas.1222358110. PMC 3690887. PMID 23729814.
  28. ^ Beerling, David (2020-07-08). "Potential for large-scale CO2 removal via enhanced rock weathering with croplands". Nature. 583 (7815): 242–248. Bibcode:2020Natur.583..242B. doi:10.1038/s41586-020-2448-9. PMID 32641817. S2CID 220417075. Archived from the original on 2020-07-16. Retrieved 2021-02-09.
Retrieved from ""