Female education in STEM

From Wikipedia, the free encyclopedia
Percentage of female students enrolled in engineering, manufacturing and construction programmes in higher education in different parts of the world

Female education in STEM includes child and adult female represented in the fields of science, technology, engineering, and mathematics (STEM). In 2017, 33% of students in STEM fields were women.

The organization UNESCO has stated that this gender disparity is due to discrimination, biases, social norms and expectations that influence the quality of education women receive and the subjects they study.[1] UNESCO also believes that having more women in STEM fields is desirable because it would help bring about sustainable development.[1]

Current status of girls and women in STEM education[]

Overall trends in STEM education[]

Percentage of students that take advanced courses in mathematics and physics, by sex, Grade 12.[2]

Gender differences in STEM education participation are already visible in early childhood care and education in science- and math-related play, and become more pronounced at higher levels of education. Girls appear to lose interest in STEM subjects with age, particularly between early and late adolescence.[1] This decreased interest affects participation in advanced studies at the secondary level and in higher education.[1] Female students represent 35% of all students enrolled in STEM-related fields of study at this level globally. Differences are also observed by disciplines, with female enrollment lowest in engineering, manufacturing and construction, natural science, mathematics and statistics and ICT fields. Significant regional and country differences in female representation in STEM studies can be observed, though, suggesting the presence of contextual factors affecting girls’ and women's engagement in these fields. Women leave STEM disciplines in disproportionate numbers during their higher education studies, in their transition to the world of work and even in their career cycle.[1][3][4][5][6][7]

Learning achievement in STEM education[]

In Chile, as in many countries, STEM fields of study are dominated by men

Data on gender differences in learning achievement present a complex picture, depending on what is measured (subject, knowledge acquisition against knowledge application), the level of education/age of students, and geographic location. Overall, women's participation has been increasing, but significant regional variations exist. For example, where data are available in Africa, Latin America and the Caribbean, the gender gap is largely in favor of boys in mathematics achievement in secondary education. In contrast, in the Arab States, girls perform better than boys in both subjects in primary and secondary education. As with the data on participation, national and regional variations in data on learning achievement suggest the presence of contextual factors affecting girls’ and women's engagement in these fields. Girls’ achievement seems to be stronger in science than mathematics and where girls do better than boys, the score differential is up to three times higher than where boys do better.[8] Girls tend to outperform boys in certain sub-topics such as biology and chemistry but do less well in physics and earth science.

The gender gap has fallen significantly in science in secondary education among TIMSS trend countries: 14 out of 17 participating countries had no gender gap in science in 2015, compared to only one in 1995. However, the data is less well known outside of these 17 countries. The gender gap in boys' favor is slightly bigger in mathematics but improvements over time in girls’ favor are also observed in certain countries, despite the important regional variations. Gender differences are observed within mathematic sub-topics with girls outperforming boys in topics such as algebra and geometry but doing less well in "number". Girls’ performance is stronger in assessments that measure knowledge acquisition than those measuring knowledge application. Country coverage in terms of data availability is quite limited while data is collected at a different frequency and against different variables in the existing studies. There are large gaps in our knowledge of the situation in low- and middle-income countries in sub-Saharan Africa, Central Asia, and South and West Asia, particularly at the secondary level.[1][4][5][9][10][11][12][13]

Factors influencing girls' and women's participation and achievement in STEM education[]

According to PISA 2015 results 4.8% of boys and 0.4% of girls expect an ICT career[14]

According to UNESCO, there are multiple and overlapping factors which influence girls' and women's participation, achievement and progression in STEM studies and careers, all of which interact in complex ways, including:

  • Individual level: biological factors that may influence individuals’ abilities, skills, and behavior such as brain structure and function, hormones, genetics, and cognitive traits like spatial and linguistic skills. It also considers psychological factors, including self-efficacy, interest and motivation.
  • Family and peer level: parental beliefs and expectations, parental education and socioeconomic status, and other household factors, as well as peer influences.
  • School level: factors within the learning environment, including teachers’ profile, experience, beliefs and expectations, curricula, learning materials and resources, teaching strategies and student teacher interactions, assessment practices and the overall school environment.
  • Societal level: social and cultural norms related to gender equality, and gender stereotypes in the media.[1]

Individual level[]

Individual Level

The question of whether there are differences in cognitive ability between men and women has long been a topic of debate among researchers and scholars. Some studies have found no differences in the neural mechanism of learning based on sex.

Loss of interest has been the major reason cited for girls opting out of STEM. However, some have stated that this choice is influenced heavily by the socialization process and stereotyped ideas about gender roles, including stereotypes about gender and STEM. Gender stereotypes that communicate the idea that STEM studies and careers are male domains can negatively affect girls’ interest, engagement, and achievement in STEM and discourage them from pursuing STEM careers. Girls who assimilate such stereotypes have lower levels of self-efficacy and confidence in their ability than boys.[15] Self-efficacy affects both STEM education outcomes and aspirations for STEM careers to a considerable extent. In recent years, more women have been majoring in STEM, although we still continue to witness vast imbalances between men and women studying math, engineering, or science.[16]

Family and peer level[]

Parents, including their beliefs and expectations, play an important role in shaping girls’ attitudes towards, and interest in, STEM studies. Parents with traditional beliefs about gender roles and who treat girls and boys unequally can reinforce stereotypes about gender and ability in STEM. Parents can also have a strong influence on girls' STEM participation and learning achievement through the family values, environment, experiences and encouragement that they provide. Some research finds that parents’ expectations, particularly the mother's expectations, have more influence on the higher education and career choices of girls than those of boys.[1] Higher socio-economic status and parental educational qualifications are associated with higher scores in mathematics and science for both girls and boys. Girls’ science performance appears to be more strongly associated with mothers’ higher educational qualifications, and boys’ with their fathers’. Family members with STEM careers can also influence girls’ STEM engagement. The broader socio-cultural context of the family can also play a role. Factors such as ethnicity, the language used at home, immigrant status and family structure may also have an influence on girls’ participation and performance in STEM. Peers can also impact on girls’ motivation and feeling of belonging in STEM education. Influence of female peers is a significant predictor of girls’ interest and confidence in mathematics and science.[9]

School level[]

Qualified teachers with specialization in STEM can positively influence girls’ performance and engagement with STEM education and their interest in pursuing STEM careers. Female STEM teachers often have stronger benefits for girls, possibly by acting as role models and by helping to dispel stereotypes about sex-based STEM ability. Teachers’ beliefs, attitudes, behaviors and interactions with students, as well as Curricula and learning materials, can all play a role as well. Opportunities for real-life experiences with STEM, including hands-on practice, apprenticeships, career counseling and mentoring can expand girls’ understanding of STEM studies and professions and maintain interest. Assessment processes and tools that are gender-biased or include gender stereotypes may negatively affect girls’ performance in STEM. Girls’ learning outcomes in STEM can also be compromised by psychological factors such as mathematics or test anxiety.[1][4][6][9]

The confidence of a female teacher in STEM subjects also has a strong impact on how well female students will perform in those subjects in the elementary school classroom. For example, female elementary teachers with anxiety around math will negatively affect the achievement of their female students in math.[17] Correlations have been found between gender bias in female elementary students and their achievement in math. Those who had lower achievement over time have also been found to believe that boys are inherently better at math than girls.[17]

Societal level[]

Cultural and social norms influence girls’ perceptions about their abilities, role in society and career and life aspirations. The degree of gender equality in wider society influences girls’ participation and performance in STEM. In countries with greater gender equality, girls tend to have more positive attitudes and confidence about mathematics and the gender gap in achievement in the subject is smaller. Gender stereotypes portrayed in the media are internalized by children and adults and affect the way they view themselves and other. Media can perpetuate or challenge gender stereotypes about STEM abilities and careers.[18]

Effects of Gender Disparities

The prolonged consequence that erupts from consistent gendered stereotypes relating to women's inability to become successful in the field of STEM is developing a fixed mindset that they are not equipped enough to think critically or contribute valuable ideas in careers that are predominantly male workers. Stepping into a workplace where men outnumber women knowing that male co-workers expect lower capabilities from a woman working significantly causes women to undermine their skills and performance in their job.  This in part is due to the representativeness heuristic- when people do not look the part, others are more critical of them. In a heavily male populated environment, men are more critical of women because they do not appear how the abstract representation in STEM fields typically appear. A study demonstrating the effects of construal level priming conditions between men and women, concluded that high construal levels facilitate the use of representativeness heuristic. In contrast, low construal conditions portrayed a decrease in the use of representativeness heuristic.[15]

Sources[]

Definition of Free Cultural Works logo notext.svg This article incorporates text from a free content work. License statement/permission on Wikimedia Commons. Text taken from Cracking the code: girls' and women's education in science, technology, engineering and mathematics (STEM), 23, 37, 46, 49, 56, 58, UNESCO, UNESCO. To learn how to add open license text to Wikipedia articles, please see this how-to page. For information on reusing text from Wikipedia, please see the terms of use.

References[]

  1. ^ Jump up to: a b c d e f g h i Cracking the code: Girls' and womens' education in science, technology, engineering and mathematics (STEM) (PDF). UNESCO. 2017. ISBN 978-92-3-100233-5.
  2. ^ Mullis, I. V. S., Martin, M. O., Foy, P. and Hooper, M. (2016). "TIMSS Advanced 2015 International Results in Advanced Mathematics and Physics". TIMSS & PIRLS International Study Center website. Archived from the original on 2017-02-15. Retrieved 2 June 2017.CS1 maint: multiple names: authors list (link)
  3. ^ "STEM and Gender Advancement (SAGA) | United Nations Educational, Scientific and Cultural Organization". www.unesco.org. Retrieved 2017-10-12.
  4. ^ Jump up to: a b c PISA 2015 Results (Volume I): Excellence and Equity in Education. Paris: OECD. 2016.
  5. ^ Jump up to: a b "TIMSS ADVANCED 2015 INTERNATIONAL RESULTS REPORT – TIMSS 2015 INTERNATIONAL RESULTS REPORT". timssandpirls.bc.edu. Retrieved 2017-10-12.
  6. ^ Jump up to: a b UIS. "UIS Statistics". data.uis.unesco.org. Retrieved 2017-10-12.
  7. ^ Science and Engineering Indicators 2014. Arlington: National Science Board. 2014.
  8. ^ UNESCO (2017). Cracking the code girls' and women's education in science, technology, engineering and mathematics (STEM). Paris: Unesco. ISBN 978-92-3-100233-5. OCLC 1113762987.
  9. ^ Jump up to: a b c Mullis, I. V. S., Martin, M. O. and Loveless, T. (2016). International Trends in Mathematics and Science Achievement, Curriculum and Instruction. Boston: 20 Years of TIMSS.CS1 maint: multiple names: authors list (link)
  10. ^ Gender Inequality in Learning Achievement in Primary Education. What can TERCE Tell us?. Santiago: UNESCO. 2016.
  11. ^ PASEC 2014: Education System Performance in Francophone Sub-Saharan Africa. Dakar: PASEC. 2015.
  12. ^ Salto, M. (2011). Trends in the Magnitude and Direction of Gender Differences in Learning Outcomes. SACMEQ.
  13. ^ Fraillon, J., Ainley, J., Schulz, W., Friedman, T. and Gebhardt, E. (2014). Preparing for Life in a Digital Age. The IEA International Computer and Information Literacy Study (ICILS) Report. Melbourne: ICILS and Springer Open.CS1 maint: multiple names: authors list (link)
  14. ^ Catherine André/VoxEurop/EDJNet; Marzia Bona/OBC Transeuropa/EDJNet (19 April 2018). "The ICT sector is booming. But are women missing out?". Retrieved 27 August 2018.
  15. ^ Jump up to: a b "Supplemental Material for The Effects of Construal Level on Heuristic Reasoning: The Case of Representativeness and Availability". Decision. 2014-12-22. doi:10.1037/dec0000021.supp. ISSN 2325-9965.
  16. ^ Sonnert, Gerhard; Fox, Mary Frank; Adkins, Kristen (December 2007). "Undergraduate Women in Science and Engineering: Effects of Faculty, Fields, and Institutions Over Time". Social Science Quarterly. 88 (5): 1333–1356. doi:10.1111/j.1540-6237.2007.00505.x. ISSN 0038-4941.
  17. ^ Jump up to: a b Beilock, Sian L.; Gunderson, Elizabeth A.; Ramirez, Gerardo; Levine, Susan C.; Smith, Edward E. (February 5, 2010). "Female Teachers' Math Anxiety Affects Girls' Math Achievement". Proceedings of the National Academy of Sciences. 107 (5): 1860–1863. Bibcode:2010PNAS..107.1860B. doi:10.1073/pnas.0910967107. JSTOR 40536499. PMC 2836676. PMID 20133834.
  18. ^ Beasley, Maya (Summer 2012). "Why they leave: the impact of stereotype threat on the attrition of women and minorities from science, math and engineering majors". Social Psychology of Education. 15 (4): 427–448. doi:10.1007/s11218-012-9185-3. S2CID 2470487.
Retrieved from ""