List of organisms by chromosome count

From Wikipedia, the free encyclopedia
Karyotype of a human being, showing 22 pairs of autosomal chromosomes and both the XX female and the XY male possibilities for the pair of allosomic (sex) chromosomes
Fusion of ancestral chromosomes left distinctive remnants of telomeres, and a vestigial centromere. As other non-human extant hominidae have 48 chromosomes it is believed that the human chromosome 2 is the result of the merging of two chromosomes.[1]

The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms. This number, along with the visual appearance of the chromosome, is known as the karyotype,[2][3][4] and can be found by looking at the chromosomes through a microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics.[5] The preparation and study of karyotypes is part of cytogenetics.

  Animals
  Plants
  Other Eukaryotes
Organism
(Scientific name)
Chromosome number Picture Karyotype Notes Source
Jack jumper ant
(Myrmecia pilosula)
2/1 Myrmecia.pilosula.jpg 2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes.[6] [6]
Spider mite
(Tetranychidae)
4–14 Tetranychus urticae with silk threads.jpg Spider mites (family Tetranychidae) are typically haplodiploid (males are haploid, while females are diploid)[7] [7]
Cricotopus sylvestris 4 [8]
Oikopleura dioica 6 Oikopleura dioica 2.jpg [9]
Yellow fever mosquito
(Aedes aegypti)
6 Aedes aegypti.jpg Yellow Fever Mosquito (Aedes aegypti) chromosomes.png The 2n=6 chromosome number is conserved in the entire family Culicidae, except in Chagasia bathana, which has 2n=8.[10] [10]
Indian muntjac
(Muntiacus muntjak)
6/7 Muntjac deer.JPG Karyotype of Indian muntjac (Muntiacus muntjak).png 2n = 6 for females and 7 for males. The lowest diploid chromosomal number in mammals.[11] [12]
Hieracium 8 Yellow Hawkweed.jpg
Fruit fly
(Drosophila melanogaster)
8 Drosophila melanogaster - side (aka).jpg Drosophila metaphase chromosomes female.png 6 autosomal and 2 allosomic (sex) [13]
Macrostomum lignano 8 Macrostomum lignano.jpg Karyotype of Macrostomum lignano.png [14]
Thale cress
(Arabidopsis thaliana)
10 Arabidopsis thaliana.jpg Karyotype of Thale cress (Arabidopsis thaliana).png
Swamp wallaby
(Wallabia bicolor)
10/11 Image-Swamp-Wallaby-Feeding-4,-Vic,-Jan.2008.jpg Karyotype of swamp wallaby (Wallabia bicolor).png 11 for male, 10 for female [15]
Australian daisy
(Brachyscome dichromosomatica)
12 Brachyscome iberidifolia1.jpg This species can have more B chromosomes than A chromosomes at times, but 2n=4. [16]
Nematode
(Caenorhabditis elegans)
12/11 Adult Caenorhabditis elegans.jpg Karyotype of Caenorhabditis elegans.png 12 for hermaphrodites, 11 for males
Spinach
(Spinacia oleracea)
12 Wurzelspinat02.jpg Karyotype of Spinach (Spinacia oleracea L. Mazeran).png [17]
Broad bean
(Vicia faba)
12 Fava beans 1.jpg Karyotype of Broad bean (Vicia faba).png [18]
Yellow dung fly
(Scathophaga stercoraria)
12 Fliege9012.JPG Karyotype of female yellow dung fly (Scathophaga stercoraria).png 10 autosomal and 2 allosomic (sex) chromosomes. Males have XY sex chromosomes and females have XX sex chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males.[19] [19]
Slime mold
(Dictyostelium discoideum)
12 Dictyostelium Fruiting Bodies.JPG [20]
Cucumber
(Cucumis sativus)
14 Komkommer plant.jpg Karyotype of cucumber (Cucumis sativus).png [21]
Tasmanian devil
(Sarcophilus harrisii)
14 Sarcophilus harrisii taranna.jpg Karyotype of Tasmanian devil (Sarcophilus Harrisii).png
Rye
(Secale cereale)
14 Rye Mature Grain Summer.jpg Karyotype of Austrian rye (Secale cereale).png [22]
Pea
(Pisum sativum)
14 Peas in pods - Studio.jpg Karyotype of pea (Pisum sativum).png [22]
Barley
(Hordeum vulgare)
14 Hordeum-barley.jpg Karyotype of barley (Hordeum vulgare).png [23]
Aloe vera 14 Aloe vera 1.jpg Karyotype of Aloe vera.png The diploid chromosome number is 2n = 14 with four pair of long acrocentric chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short sub metacentric chromosomes ranging from 4.6 μm to 5.4 μm.[24] [24]
Koala
(Phascolarctos cinereus)
16 Koala climbing tree.jpg
Kangaroo 16 Macropus robustus2.jpg Karyotype of wallaroo (Macropus robustus).png This includes several members of genus Macropus, but not the red kangaroo (M. rufus, 20) [25]
Botryllus schlosseri 16 Botryllus schlosseri.jpg [26]
Schistosoma mansoni 16 Schistosoma mansoni trematodes.jpg Karyotype of Schistosoma mansoni.png 2n=16. 7 autosomal pairs and ZW sex-determination pair.[27] [27]
Welsh onion
(Allium fistulosum)
16 Spring Onion.jpg DAPI stained Welsh onion (Allium fistulosum) chromosomes.png [28]
Garlic
(Allium sativum)
16 All Garlic Ail Ajo.jpg Karyotype of garlic (Allium sativum).png [28]
Itch mite
(Sarcoptes scabiei)
17/18 Sarcoptes scabei 2.jpg Chromosomal spreads of single itch mite (Sarcoptes scabiei) cell - 17 chromosomes.png According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an XO sex determination mechanism, where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18).[29] [29]
Radish
(Raphanus sativus)
18 Raphanus sativus subsp. sativus, radijs (1).jpg Karyotype of radish (Raphanus sativus).png [22]
Carrot
(Daucus carota)
18 Baby carrots - jules.jpg Karyotype of carrot (Daucus carota).png The genus Daucus includes around 25 species. D. carota has nine chromosome pairs (2n = 2x = 18). D. capillifolius, D. sahariensis and D. syrticus are the other members of the genus with 2n = 18, whereas D. muricatus (2n = 20) and D. pusillus (2n = 22) have a slightly higher chromosome number. A few polyploid species as for example D. glochidiatus (2n = 4x = 44) and D. montanus (2n = 6x = 66) also exist.[30] [30]
Cabbage
(Brassica oleracea)
18 Choux 02.jpg Karyotype of Brussels sprout (Brassica oleracea var. gemmifera).png Broccoli, cabbage, kale, kohlrabi, brussels sprouts, and cauliflower are all the same species and have the same chromosome number.[22] [22]
Citrus
(Citrus)
18 Lemon, Lime and Orange.jpg Karyotype of Lemon (Citrus limon).png Chromosome number of the genus Citrus, which including lemons, oranges, grapefruit, pomelo and limes, is 2n = 18.[31] [32]
Passion fruit
(Passiflora edulis)
18 Passionfruit and cross section.jpg Karyotype of passion fruit (Passiflora edulis).png [33]
Setaria viridis
(Setaria viridis)
18 エノコログサSetaria viridis (L.) P.Beauv.P9130041.JPG Karyotype of Setaria viridis.png [34]
Maize
(Zea mays)
20 Klip kukuruza uzgojen u Međimurju (Croatia).JPG C-banded karyograms of Maize.png [22]
Cannabis
(Cannabis sativa)
20 Cannabis sativa leaf.jpg Karyotype of Hemp (Cannabis sativa).png
Western clawed frog
(Xenopus tropicalis)
20 Xenopus tropicalis02.jpeg Karyotype of Western clawed frog (Xenopus (Silurana) tropicalis).png [35]
Australian pitcher plant
(Cephalotus follicularis)
20 Cephalotus follicularis 002.jpg [36]
Cacao
(Theobroma cacao)
20 Matadecacao.jpg Karyotype of cacao.png [37]
Eucalyptus
(Eucalyptus)
22 700 yr red river gum02.jpg Karyotype of river red gum (Eucalyptus camaldulensis).png Although some contradictory cases have been reported, the large homogeneity of the chromosome number 2n = 22 is now known for 135 (33.5%) distinct species among genus Eucalyptus.[38] [39]
Virginia opossum
(Didelphis virginiana)
22 Opossum 2.jpg [40]
Bean
(Phaseolus sp.)
22 Phaseolus vulgaris MHNT.BOT.2016.24.73.jpg Karyotype of Common bean (Phaseolus vulgaris).png All species in the genus Phaseolus have the same chromosome number, including common bean (P. vulgaris), runner bean (P. coccineus), tepary bean (P. acutifolius) and lima bean (P. lunatus).[22] [22]
Snail 24 Grapevinesnail 01.jpg
Melon
(Cucumis melo)
24 Cucumis melo 34.jpg Karyotype of melon (Cucumis melo L.).png [41]
Rice
(Oryza sativa)
24 US long grain rice.jpg Karyotype of rice (Oryza sativa).png [22]
Silverleaf nightshade
(Solanum elaeagnifolium)
24 Solanum elaeagnifolium.jpg [42]
Sweet chestnut
(Castanea sativa)
24 Frucht der Edelkastanie.jpg Karyotype of Sweet chestnut (Castanea sativa).png [43]
Tomato
(Solanum lycopersicum)
24 Bright red tomato and cross section02.jpg Karyotype of tomato (Solanum lycopersicum).png [44]
European beech
(Fagus sylvatica)
24 Hayedomasaustral.jpg Karyotype of European beech (Fagus sylvatica).png [45]
Bittersweet nightshade
(Solanum dulcamara)
24 SolanumDulcamara-bloem-sm.jpg [46][47]
Cork oak
(Quercus suber)
24 ChampagneCorksLarge.jpg Karyotype of Cork oak (Quercus suber).png [48]
Edible frog
(Pelophylax kl. esculentus)
26 Rana esculenta on Nymphaea edit.JPG Karyotype of Edible frog (Pelophylax esculentus).png Edible frog is the fertile hybrid of the pool frog and the marsh frog.[49] [50]
Axolotl
(Ambystoma mexicanum)
28 AxolotlBE.jpg Karyotype of axolotl (Ambystoma mexicanum).png [51]
Bed bug
(Cimex lectularius)
29–47 Bedbug004.jpg Karyotype of male bed bug (Cimex lectularius).png 26 autosomes and varying number of the sex chromosomes from three (X1X2Y) to 21 (X1X2Y+18 extra Xs).[52] [52]
Pill millipede
(Arthrosphaera magna attems)
30 Pillmillipede talakaveri.jpg [53]
Giraffe
(Giraffa camelopardalis)
30 Giraffen.jpg Karyotype of giraffe (Giraffa camelopardalis).png [54]
American mink
(Neovison vison)
30 American mink geograph.co.uk 2083077.jpg
Pistachio
(Pistacia vera)
30 ARS pistachio.jpg Karyotype of Pistachio (Pistacia vera).png [55]
Japanese oak silkmoth (Antheraea yamamai) 31
Antheraea yamamai male sjh.jpg
Antheraea yamamai karyotype.jpg
[56]
Yeast
(Saccharomyces cerivisiae)
32 S cerevisiae under DIC microscopy.jpg
European honey bee
(Apis mellifera)
32/16 BeeCropped.jpg Karyotype of Honey bee (Apis mellifera).png 32 for females (2n = 32), males are haploid and thus have 16 (1n =16).[57] [57]
American badger
(Taxidea taxus)
32 AmericanBadger.JPG
Alfalfa
(Medicago sativa)
32 Graines de luzerne bio germées - 001.JPG Karyotype of tetraploid Alfalfa (Medicago sativa ssp falcata).png Cultivated alfalfa is tetraploid, with 2n=4x=32. Wild relatives have 2n=16.[22]: 165  [22]
Red fox
(Vulpes vulpes)
34 Vulpes vulpes 2.jpg Plus 3-5 microsomes. [58]
Sunflower
(Helianthus annuus)
34 Lule Dielli.JPG Karyotype of sunflower (Helianthus annuus).png [59]
Porcupine
(Erethizon dorsatum)
34 Porcupine-BioDome.jpg [60]
Globe artichoke
(Cynara cardunculus var. scolymus)
34 Artichoke J1.jpg Karyotype of globe artichoke.png [61]
Yellow mongoose
(Cynictis penicillata)
36 Yellow mongoose 1.jpg
Tibetan sand fox
(Vulpes ferrilata)
36 Tibet Fox.jpg
Starfish
(Asteroidea)
36 Nerr0878.jpg
Red panda
(Ailurus fulgens)
36 Ailurus fulgens RoterPanda LesserPanda.jpg
Meerkat
(Suricata suricatta)
36 Meerkat feb 09.jpg
Cassava
(Manihot esculenta)
36 Manihot esculenta 001.jpg Karyotype of Cassava (Manihot esculenta).png [62]
Long-nosed cusimanse
(Crossarchus obscurus)
36 Crossarchus obscurus Plzen zoo 02.2011.jpg
Earthworm
(Lumbricus terrestris)
36 Regenwurm1.jpg
African clawed frog
(Xenopus laevis)
36 Xenopus laevis 1.jpg Karyotype of African clawed frog (Xenopus laevis).png [35]
Waterwheel plant
(Aldrovanda vesiculosa)
38 Aldrovanda vesiculosa.jpg [36]
Tiger
(Panthera tigris)
38 Tigress at Jim Corbett National Park.jpg Karyotype of Siberian tiger.png
Sea otter
(Enhydra lutris)
38 Sea otter.jpg
Sable
(Martes zibellina)
38 Sable - 2.png
Raccoon
(Procyon lotor)
38 Procyon lotor (raccoon).jpg [63]
Pine marten
(Martes martes)
38 Baummarder 01.jpg
Pig
(Sus)
38 Sus Barbatus, the Bornean Bearded Pig (12616351323).jpg Karyotype of normal male pig.png
Oriental small-clawed otter
(Aonyx cinerea)
38 Otter - melbourne zoo.jpg
Lion
(Panthera leo)
38 Lion Ngorongoro Crater.jpg
Fisher
(Pekania pennanti)
38 Martes martes crop.jpg a type of marten
European mink
(Mustela lutreola)
38 Europäischer Nerz.jpg
Coatimundi 38 Coati.jpg
Cat
(Felis silvestris catus)
38 Kittyply edit1.jpg Karyotype of domestic cat (Felis catus).png
Beech marten
(Martes foina)
38 Steinmarder 01.jpg

(Bogertophis rosaliae)
38 Bogertophis subocularis.jpg [64]
American marten
(Martes americana)
38 Marten with Flowers.jpg
Trans-Pecos ratsnake
(Bogertophis subocularis)
40 Trans-Pecos Rat Snake.jpg [65]
Mouse
(Mus musculus)
40 Мышь 2.jpg Karyotype of normal male mouse.png [66]
Mango
(Mangifera indica)
40 Mangga indramayu 071007-0327 rwg.jpg [22]
Hyena
(Hyaenidae)
40 Spotted Hyena and young in Ngorogoro crater.jpg
Ferret
(Mustela putorius furo)
40 Furets albinos champagne et zibeline sable.jpg
European polecat
(Mustela putorius)
40 Ilder.jpg
American beaver
(Castor canadensis)
40 Castor canadensis.jpg
Peanut
(Arachis hypogaea)
40 Arachis-hypogaea-(peanuts).jpg Karyotype of cultivated peanut (Arachis hypogaea).png Cultivated peanut is an allotetraploid (2n = 4x = 40). Its closest relatives are the diploid (2n = 2x = 20).[67] [67]
Wolverine
(Gulo gulo)
42 Gulo gulo 01.jpg
Wheat
(Triticum aestivum)
42 Wheat (Triticum aestivum L.) at Alnarp 1.jpg Karyotype of wheat (Triticum aestivum).png This is a hexaploid with 2n=6x=42. Durum wheat is Triticum turgidum var. durum, and is a tetraploid with 2n=4x=28.[22] [22]
Rhesus monkey
(Macaca mulatta)
42 Macaca mulatta in Guiyang.jpg Karyotype of normal male rhesus macaque (Macaca mulatta).png [68]
Rat
(Rattus norvegicus)
42 Rattus norvegicus 1.jpg Karyogram of normal rat.png [69]
Oats
(Avena sativa)
42 Avena sativa 002.JPG Karyotype of hexaploid common wild oat (Avena fatua).png This is a hexaploid with 2n=6x=42. Diploid and tetraploid cultivated species also exist.[22] [22]
Giant panda
(Ailuropoda melanoleuca)
42 Giant Panda 2004-03-2.jpg
Fossa
(Cryptoprocta ferox)
42 Cryptoprocta ferox.jpg
European rabbit
(Oryctolagus cuniculus)
44 Oryctolagus cuniculus Tasmania 2.jpg Karyotype of Rabbit (Oryctolagus cuniculus).png
Eurasian badger
(Meles meles)
44 Badger-badger.jpg
Moon jellyfish
(Aurelia aurita)
44 Moon jellyfish at Gota Sagher.JPG [70]
Dolphin
(Delphinidae)
44 Kentriodon BW.jpg
Arabian coffee
(Coffea arabica)
44 Coffee arabica 12.10.2011 14-01-6.jpg Karyotype of Coffea arabica.png Out of the 103 species in the genus Coffea, arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.[71]
Reeves's muntjac
(Muntiacus reevesi)
46 Formosan Reeve's muntjac.jpg
Human
(Homo sapiens)
46 Akha cropped hires.JPG Human male karyotpe high resolution.jpg 44 autosomal. and 2 allosomic (sex) [72]
Nilgai
(
Boselaphus tragocamelus)
46 Nilgais fighting, Lakeshwari, Gwalior district, India.jpg [73]
Parhyale hawaiensis 46 Parhyale hawaiensis - adult female.png Parhyale hawaiensis - karyotype.png [74]
Water buffalo (swamp type)
(Bubalus bubalis)
48
Tobacco
(Nicotiana tabacum)
48 Nicotiana Tobacco Plants 1909px.jpg Karyotype of Tobacco (Nicotiana tabacum).png Cultivated species N. tabacum is an amphidiploid (2n=4x=48) evolved through the interspecific hybridization of the ancestors of N. sylvestris (2n=2x=24, maternal donor) and N. tomentosiformis (2n=2x=24, paternal donor) about 200,000 years ago.[75] [75]
Potato
(Solanum tuberosum)
48 Solanum tuberosum 02.jpg Karyotype of Potato (Solanum tuberosum).png This is for common potato Solanum tuberosum (tetraploid, 2n = 4x = 48). Other cultivated potato species may be diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), or pentaploid (2n = 5x = 60).[76] Wild relatives mostly have 2n=24.[22] [76]
Orangutan
(Pongo)
48 Orang Utan, Semenggok Forest Reserve, Sarawak, Borneo, Malaysia.JPG Karyotype of Orangutan (Pongo).png
Hare
(Lepus)
48 Polarhase 1 1997-08-04.jpg [77][78]
Gorilla
(Gorilla)
48 Gorillas in Uganda-1, by Fiver Löcker.jpg
Deer mouse
(Peromyscus maniculatus)
48 Peromyscus maniculatus.jpg
Chimpanzee
(Pan troglodytes)
48 Lightmatter chimp.jpg Karyotype of chimpanzee (Pan troglodytes).png [79]
Eurasian beaver
(Castor fiber)
48 Beaver pho34.jpg
Zebrafish
(Danio rerio)
50 Zebrafisch.jpg Karyotype of zebrafish (Danio rerio).png [80]
Water buffalo (Riverine type)
(Bubalus bubalis)
50 Water buffaloes in Wuyishan Wufu 2012.08.24 15-46-30.jpg Karyotype of female Nili Ravi buffalo.png
Striped skunk
(Mephitis mephitis)
50 Striped Skunk (Mephitis mephitis) DSC 0030.jpg
Pineapple
(Ananas comosus)
50 Pineapple victoria dsc07770.jpg [22]
Kit fox
(Vulpes macrotis)
50 Vulpes macrotis mutica with pups.jpg
Spectacled bear
(Tremarctos ornatus)
52 Urso-de-óculos no Zoológico de Sorocaba.JPG
Platypus
(Ornithorhynchus anatinus)
52 Platypus BrokenRiver QLD Australia.jpg Karyotype of male platypus (Ornithorhynchus anatinus).png Ten sex chromosomes. Males have X1Y1X2Y2X3Y3X4Y4X5Y5, females have X1X1X2X2X3X3X4X4X5X5.[81] [82]
Upland cotton
(Gossypium hirsutum)
52 CottonPlant.JPG Karyotype of Cotton (Gossypium hirsutum).png This is for the cultivated species G. hirsutum (allotetraploid, 2n=4x=52). This species accounts for 90% of the world cotton production. Among 50 species in the genus Gossypium, 45 are diploid (2n = 2x = 26) and 5 are allotetraploid (2n = 4x = 52).[83] [83]
Sheep
(Ovis orientalis aries)
54 Sheep norwegian dala.jpg Karyotype of sheep (Ovis aries).png
Hyrax
(Hyracoidea)
54 Procavia-capensis-Frontal.JPG Karyotype of rock hyrax (Procavia capensis).png Hyraxes were considered to be the closest living relatives of elephants,[84] but sirenians have been found to be more closely related to elephants. [85]
Raccoon dog
(Nyctereutes procyonoides procyonoides)
54 Nyctereutes procyonoides 4 (Piotr Kuczynski).jpg Karyotype of Chinese raccoon dog (Nyctereutes procyonoides procyonoides).png This number is for (N. p. procyonoides), 2n=54+B(0–4). On the other hand, Japanese raccoon dog (N. p. viverrinus) with 2n=38+B(0–8). Here, B represents B chromosome and its variation in the number between individuals.[86][87] [86]
Capuchin monkey
(Cebinae)
54 Cebus capucinus, Costa Rica.JPG [88]
Silkworm
(Bombyx mori)
56 Silkworm & cocoon.jpg Karyotype of Silkworm (Bombyx mori).png This is for the species mulberry silkworm, B. mori (2n=56). Probably more than 99% of the world's commercial silk today come from this species.[89] Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. Samia cynthia with 2n=25–28,[90] Antheraea pernyi with 2n=98.[91]) [92]
Strawberry
(Fragaria × ananassa)
56 Fragaria × ananassa.JPG Karyotype of Strawberry (Fragaria virginiana ssp glauca).png This number is octoploid, main cultivated species Fragaria × ananassa (2n = 8x = 56). In genus Fragaria, basic chromosome number is seven (x = 7) and multiple levels of ploidy, ranging from diploid (2n = 2x = 14) to decaploid (F. iturupensis, 2n = 10x = 70), are known.[93] [93]
Gaur
(Bos gaurus)
56 Bos gaurus.jpeg
Elephant
(Elephantidae)
56 Elephant near ndutu.jpg
Woolly mammoth
(Mammuthus primigenius)
58 Mamut lanudo cropped.jpg extinct; tissue from a frozen carcass
Yak
(Bos mutus)
60 Bos grunniens - Syracuse Zoo.jpg
Goat
(Capra aegagrus hircus)
60 Hausziege 04.jpg Karyotype of normal male goat.png
Cow/bull
(Bos primigenius)
60 20100516 Vacas Vilarromarís, Oroso-8-1.jpg Karyotype of cattle.PNG
American bison
(Bison bison)
60 American bison k5680-1.jpg
Sable antelope
(Hippotragus niger)
60 Sable antelope (Hippotragus niger) adult male.jpg [94]
Bengal fox
(Vulpes bengalensis)
60 Indianfox.jpg
Gypsy moth
(Lymantria dispar dispar)
62 Lymantria dispar MHNT Fronton Male.jpg
Donkey
(Equus africanus asinus)
62 Donkey 1 arp 750px.jpg
Scarlet macaw
(Ara macao)
62–64 Scarlet Macaw (Ara macao) -Panama-8a.jpg Karyotype of Scarlet Macaw (Ara macao).png [95]
Mule 63 Juancito.jpg semi-infertile (odd number of chromosomes – between donkey (62) and horse (64) makes meiosis much more difficult)
Guinea pig
(Cavia porcellus)
64 Two adult Guinea Pigs (Cavia porcellus).jpg G-banded karyotype of female guinea pig (Cavia porcellus).png
Spotted skunk
(Spilogale x)
64 Spilogale gracilis.jpg
Horse
(Equus ferus caballus)
64 LaMirage body07.jpg Karyotype of male Marajoara Horse (Equus Caballus).png
Fennec fox
(Vulpes zerda)
64 Fennec Foxes.jpg [58]
Echidna
(Tachyglossidae)
63/64 Ameisenigel.jpg 63 (X1Y1X2Y2X3Y3X4Y4X5, male) and 64 (X1X1X2X2X3X3X4X4X5X5, female)[96]
Chinchilla
(Chinchilla lanigera)
64 Chinchilla lanigera.jpg [60]
Nine-banded armadillo
(Dasypus novemcinctus)
64 Nine-banded Armadillo.jpg Karyotype of nine-banded armadillo.png [97]
Gray fox
(Urocyon cinereoargenteus)
66 Urocyon cinereoargenteus.jpg [58]
Red deer
(Cervus elaphus)
68 Zoo-Dortmund-IMG 5549-a.jpg
Elk (wapiti)
(Cervus canadensis)
68 2007-Tule-elk-rut.jpg
Roadside hawk
(Rupornis magnirostris)
68 Buteo magnirostris -Goias -Brazil-8.jpg Karyotype of roadside hawk (Rupornis magnirostris).png [98]
White-tailed deer
(Odocoileus virginianus)
70 White-tailed deer (Odocoileus virginianus) grazing - 20050809.jpg
Black nightshade
(Solanum nigrum)
72 Solanum nigra bgiu.jpg [99]
Bat-eared fox
(Otocyon megalotis)
72 Otocyon megalotis (Namibia).jpg [58]
Sun bear
(Helarctos malayanus)
74 Sitting sun bear.jpg
Sloth bear
(Melursus ursinus)
74 Sloth Bear Washington DC.JPG
Polar bear
(Ursus maritimus)
74 Polar Bear - Alaska.jpg
Brown bear
(Ursus arctos)
74 Brown bear (Ursus arctos arctos) running.jpg
Asiatic black bear
(Ursus thibetanus)
74 Kragenbär.jpg
American black bear
(Ursus americanus)
74 Ursus americanus sequoia forest 2003-09-21.jpg
Bush dog
(Speothos venaticus)
74 Speothos venaticus Zoo Praha 2011-5 (cropped).jpg
Maned wolf
(Chrysocyon brachyurus)
76 Chrysocyon.brachyurus.jpg
Gray wolf
(Canis lupus)
78 Canis lupus 265b.jpg
Golden jackal
(Canis aureus)
78 Golden wolf sa02.jpg [58]
Dove
(Columbidae)
78 Rock dove - natures pics.jpg Based on African collared dove [100]
Dog
(Canis lupus familiaris)
78 Boddhi the mixed-breed dog.jpg Karyotype of Dog (Canis lupus familiaris).png Normal dog karyotype is composed of 38 pairs of acrocentric autosomes and two metacentric sex chromosomes.[101][102] [103]
Dingo
(Canis lupus dingo)
78 Canis lupus dingo - cleland wildlife park.JPG [58]
Dhole
(Cuon alpinus)
78 Cuon.alpinus-cut.jpg
Coyote
(Canis latrans)
78 Coyote by Rebecca Richardson.jpg [58]
Chicken
(Gallus gallus domesticus)
78 Female pair.jpg Karyotype of chicken (Gallus gallus).png
African wild dog
(Lycaon pictus)
78 Lycaon pictus (Temminck, 1820).jpg [58]
Tropical pitcher plant
(Nepenthes rafflesiana)
78 Pahangraff3.jpg [36]
Turkey
(Meleagris)
80 Wild turkey eastern us.jpg [104]
Sugarcane
(Saccharum officinarum)
80 Cut sugarcane.jpg Karyotype of Sugarcane (Saccharum officinarum LA Purple).png This is for S. officinarum (octoploid, 2n = 8× = 80).[105] About 70% of the world's sugar comes from this species.[106] Other species in the genus Saccharum, collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.[107] [105]
Pigeon
(Columbidae)
80 Paloma en la Ciudad de México.JPG [108]
Azure-winged magpie
(Cyanopica cyanus)
80 Cyanopica cyanus Yokohama 5.jpg [109]
Great white shark
(Carcharodon carcharias)
82 Carcharodon carcharias.jpg [110]

Erinaceus
88 Erinaceus europeaus (DarkAn9el).jpg
Moonworts
(Botrychium)
90 Botrychium-4.jpg
African hedgehogs
Atelerix
90 Igel01.jpg
Grape fern
(Sceptridium)
90 Botrychium multifidum.jpg
Pittier's crab-eating rat
(Ichthyomys pittieri)
92 Previously thought to be the highest number in mammals, tied with Anotomys leander. [111]
Prawn
(Penaeus semisulcatus)
86–92 Penaeus monodon.jpg [112]
Aquatic rat
(Anotomys leander)
92 Previously thought to be the highest number in mammals, tied with Ichthyomys pittieri. [111]
Kamraj (fern)
(Helminthostachys zeylanica)
94 Helminthostachys zeylanica.jpg
Crucian carp
(Carassius carassius)
100 Cyprinus carpio.jpeg Karyotype of crucian carp (Carassius carassius).png [113]
Red viscacha rat
(Tympanoctomys barrerae)
102 Tympanoctomys barrerae.jpg Metaphase spread of the Viscacha rat (Tympanoctomys barrerae).jpg Highest number known in mammals, thought to be a tetraploid[114] or allotetraploid.[115] [116]
Walking catfish
(Clarias batrachus)
104 Clarias batrachus.jpg Karyotype of walking catfish (Clarias batrachus).png [117]
American paddlefish
(Polyodon spathula)
120 Paddlefish underwater.jpeg Karyotype of North American paddlefish (Polyodon spathula).png [118]
African baobab
(Adansonia digitata)
168

aka "tree of life". 2n = 4x = 168

[119]
Northern lamprey
(Petromyzontidae)
174 Petromyzon marinus2.jpg [120]
Rattlesnake fern
(Botrypus virginianus)
184 Botrychium virginianum.JPG [121]
Red king crab
(Paralithodes camtschaticus)
208 Paralithodes camtschaticus, 1.jpg
Field horsetail
(Equisetum arvense)
216 Equisetum arvense foliage.jpg
Agrodiaetus butterfly
(Agrodiaetus shahrami)
268 This insect has one of the highest chromosome numbers among all animals. [122]
Black mulberry
(Morus nigra)
308 Morus-nigra.JPG Highest ploidy among plants, 22-ploid (2n = 22x = 308)[123] [124]
Atlas blue
(Polyommatus atlantica)
448-452 PolyommatusAtlanticaMMUpUnAC1.jpg Karyotype of Atlas blue (Polyommatus atlanticus).png 2n = c. 448–452. Highest number of chromosomes in the non-polyploid eukaryotic organisms.[125] [125]
Adders-tongue
(Ophioglossum)
1260 Ophioglossum closeup.jpg n=120–720 with a high degree of polyploidization[126] Ophioglossum reticulatum n=720 in hexaploid species, 2n=1260 in decaploid species [127]
Ciliated protozoa
(Tetrahymena thermophila)
10 (in micronucleus) Tetrahymena thermophila.png 50x = 12,500 (in macronucleus, except minichromosomes)
10,000x = 10,000 (macronuclear minichromosomes)[128]
Ciliated protozoa
(Oxytricha trifallax)
16,000[129] Oxytricha trifallax.jpg Macronuclear "nanochromosomes"; ampliploid. MAC chromosomes × 1900 ploidy level = 2.964 × 107 chromosomes [130][131][132]

References[]

  1. ^ Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M (May 1992). "Evidence for an ancestral alphoid domain on the long arm of human chromosome 2". Human Genetics. 89 (2): 247–9. doi:10.1007/BF00217134. PMID 1587535. S2CID 1441285.
  2. ^ Concise Oxford Dictionary
  3. ^ White MJ (1973). The chromosomes (6th ed.). London: Chapman & Hall. p. 28.
  4. ^ Stebbins GL (1950). "Chapter XII: The Karyotype". Variation and evolution in plants. Columbia University Press.
  5. ^ King RC, Stansfield WD, Mulligan PK (2006). A dictionary of genetics (7th ed.). Oxford University Press. p. 242.
  6. ^ Jump up to: a b Crosland MW, Crozier RH (March 1986). "Myrmecia pilosula, an Ant with Only One Pair of Chromosomes". Science. 231 (4743): 1278. Bibcode:1986Sci...231.1278C. doi:10.1126/science.231.4743.1278. PMID 17839565. S2CID 25465053.
  7. ^ Jump up to: a b Helle W, Bolland HR, Gutierrez J (1972). "Minimal chromosome number in false spider mites (Tenuipalpidae)". Experientia. 28 (6): 707. doi:10.1007/BF01944992. S2CID 29547273.
  8. ^ Michailova P (1976). "Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera)". Caryologia. 29 (3): 291–306. doi:10.1080/00087114.1976.10796669.
  9. ^ Körner WH (1952). "Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol)". Zeitschrift für Morphologie und Ökologie der Tiere. 41 (1): 1–53. doi:10.1007/BF00407623. JSTOR 43261846. S2CID 19101198.
  10. ^ Jump up to: a b Giannelli F, Hall JC, Dunlap JC, Friedmann T (1999). Advances in Genetics, Volume 41 (Advances in Genetics). Boston: Academic Press. p. 2. ISBN 978-0-12-017641-0.
  11. ^ Wang W, Lan H (September 2000). "Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny". Molecular Biology and Evolution. 17 (9): 1326–33. doi:10.1093/oxfordjournals.molbev.a026416. PMID 10958849.
  12. ^ Wurster DH, Benirschke K (June 1970). "Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number". Science. 168 (3937): 1364–6. Bibcode:1970Sci...168.1364W. doi:10.1126/science.168.3937.1364. PMID 5444269. S2CID 45371297.
  13. ^ "Drosophila Genome Project". National Center for Biotechnology Information. Retrieved 2009-04-14.
  14. ^ Zadesenets KS, Vizoso DB, Schlatter A, Konopatskaia ID, Berezikov E, Schärer L, Rubtsov NB (2016). "Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology". PLOS ONE. 11 (10): e0164915. Bibcode:2016PLoSO..1164915Z. doi:10.1371/journal.pone.0164915. PMC 5068713. PMID 27755577.
  15. ^ Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA (June 1997). "Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system". Mammalian Genome. 8 (6): 418–22. doi:10.1007/s003359900459. PMID 9166586. S2CID 12515691.
  16. ^ Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN (July 1995). "Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica". Chromosoma. 103 (10): 708–14. doi:10.1007/BF00344232. PMID 7664618. S2CID 12246995.
  17. ^ Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (June 2015). "Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species". G3. 5 (8): 1663��73. doi:10.1534/g3.115.018671. PMC 4528323. PMID 26048564.
  18. ^ Patlolla AK, Berry A, May L, Tchounwou PB (May 2012). "Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles". International Journal of Environmental Research and Public Health. 9 (5): 1649–62. doi:10.3390/ijerph9051649. PMC 3386578. PMID 22754463.
  19. ^ Jump up to: a b Sbilordo SH, Martin OY, Ward PI (2010). "The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection". Journal of Insect Science. 10 (118): 1–11. doi:10.1673/031.010.11801. PMC 3016996. PMID 20874599.
  20. ^ "First of six chromosomes sequenced in Dictyostelium discoideum". Genome News Network. Retrieved 2009-04-29.
  21. ^ Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, et al. (September 2015). "Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping". BMC Genomics. 16 (1): 730. doi:10.1186/s12864-015-1877-6. PMC 4583154. PMID 26407707.
  22. ^ Jump up to: a b c d e f g h i j k l m n o p q r Simmonds, NW, ed. (1976). Evolution of crop plants. New York: Longman. ISBN 978-0-582-44496-6.[page needed]
  23. ^ Schubert V, Ruban A, Houben A (2016). "Chromatin Ring Formation at Plant Centromeres". Frontiers in Plant Science. 7: 28. doi:10.3389/fpls.2016.00028. PMC 4753331. PMID 26913037.
  24. ^ Jump up to: a b Haque SM, Ghosh B (December 2013). "High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants". Botanical Studies. 54 (1): 46. doi:10.1186/1999-3110-54-46. PMC 5430365. PMID 28510900.
  25. ^ Rofe RH (December 1978). "G-banded chromosomes and the evolution of macropodidae". Australian Mammalogy. 2: 50–63. ISSN 0310-0049.
  26. ^ Colombera D (1974). "Chromosome number within the class Ascidiacea". Marine Biology. 26 (1): 63–68. doi:10.1007/BF00389087. S2CID 84189212.
  27. ^ Jump up to: a b Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. (July 2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode:2009Natur.460..352B. doi:10.1038/nature08160. PMC 2756445. PMID 19606141.
  28. ^ Jump up to: a b Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M (2012). "Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium". PLOS ONE. 7 (12): e51315. Bibcode:2012PLoSO...751315N. doi:10.1371/journal.pone.0051315. PMC 3517398. PMID 23236469.
  29. ^ Jump up to: a b Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K (January 2012). "Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus". Parasites & Vectors. 5: 3. doi:10.1186/1756-3305-5-3. PMC 3274472. PMID 22214472.
  30. ^ Jump up to: a b Dunemann F, Schrader O, Budahn H, Houben A (2014). "Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.)". PLOS ONE. 9 (6): e98504. Bibcode:2014PLoSO...998504D. doi:10.1371/journal.pone.0098504. PMC 4041860. PMID 24887084.
  31. ^ Guerra M, Pedrosa A, Cornélio MT, Santos K, Soares Filho WD (1997). "Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank". Brazilian Journal of Genetics. 20 (3): 489–496. doi:10.1590/S0100-84551997000300021.
  32. ^ Hynniewta M, Malik SK, Rao SR (2011). "Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India". Comparative Cytogenetics. 5 (4): 277–87. doi:10.3897/CompCytogen.v5i4.1796. PMC 3833788. PMID 24260635.
  33. ^ Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003
  34. ^ Nani TF, Cenzi G, Pereira DL, Davide LC, Techio VH (2015). "Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution". Comparative Cytogenetics. 9 (4): 645–60. doi:10.3897/CompCytogen.v9i4.5456. PMC 4698577. PMID 26753080.
  35. ^ Jump up to: a b Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, et al. (April 2015). "A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis". Cytogenetic and Genome Research. 145 (3–4): 187–91. doi:10.1159/000381292. PMID 25871511. S2CID 207626597.
  36. ^ Jump up to: a b c Kondo K (May 1969). "Chromosome Numbers of Carnivorous Plants". Bulletin of the Torrey Botanical Club. 96 (3): 322–328. doi:10.2307/2483737. JSTOR 2483737.
  37. ^ da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocínio NG, Alves RM, et al. (2017). "Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)". PLOS ONE. 12 (2): e0170799. Bibcode:2017PLoSO..1270799D. doi:10.1371/journal.pone.0170799. PMC 5302445. PMID 28187131.
  38. ^ Oudjehih B, Abdellah B (2006). "Chromosome numbers of the 59 species of Eucalyptus L'Herit. (Myrtaceae)". Caryologia. 59 (3): 207–212. doi:10.1080/00087114.2006.10797916.
  39. ^ Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, Gurumurthi K (October 2005). "Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR)". Tree Physiology. 25 (10): 1295–302. doi:10.1093/treephys/25.10.1295. PMID 16076778.
  40. ^ Biggers JD, Fritz HI, Hare WC, Mcfeely RA (June 1965). "Chromosomes of American Marsupials". Science. 148 (3677): 1602–3. Bibcode:1965Sci...148.1602B. doi:10.1126/science.148.3677.1602. PMID 14287602. S2CID 46617910.
  41. ^ Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, et al. (January 2015). "Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly". BMC Genomics. 16: 4. doi:10.1186/s12864-014-1196-3. PMC 4316794. PMID 25612459.
  42. ^ Heiser CB, Whitaker TW (March 1948). "Chromosome number, polyploidy, and growth habit in California weeds". American Journal of Botany. 35 (3): 179–86. doi:10.2307/2438241. JSTOR 2438241. PMID 18909963.
  43. ^ Ivanova D, Vladimirov V (2007). "Chromosome numbers of some woody species from the Bulgarian flora" (PDF). Phytologia Balcanica. 13 (2): 205–207.
  44. ^ Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, et al. (May 2007). "Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species". BMC Plant Biology. 7: 24. doi:10.1186/1471-2229-7-24. PMC 1899175. PMID 17517142.
  45. ^ Packham JR, Thomas PA, Atkinson MD, Degen T (2012). "Biological Flora of the British Isles:Fagus sylvatica". Journal of Ecology. 100 (6): 1557–1608. doi:10.1111/j.1365-2745.2012.02017.x.
  46. ^ Abrams L (1951). Illustrated Flora of the Pacific States. Volume 3. Stanford University Press. p. 866.
  47. ^ Stace C (1997). New Flora of the British Isles (Second ed.). Cambridge, UK. p. 1130.
  48. ^ Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome, 41: 162–168.
  49. ^ Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L (July 2016). "Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?". BMC Genetics. 17 (1): 100. doi:10.1186/s12863-016-0408-z. PMC 4930623. PMID 27368375.
  50. ^ Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P (2011). "Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization". Cytogenetic and Genome Research. 134 (3): 206–12. doi:10.1159/000327716. PMID 21555873. S2CID 452336.
  51. ^ Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ (November 2015). "Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing". Scientific Reports. 5: 16413. Bibcode:2015NatSR...516413K. doi:10.1038/srep16413. PMC 4639759. PMID 26553646.
  52. ^ Jump up to: a b Sadílek D, Angus RB, Šťáhlavský F, Vilímová J (2016). "Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae)". Comparative Cytogenetics. 10 (4): 731–752. doi:10.3897/CompCytogen.v10i4.10681. PMC 5240521. PMID 28123691.
  53. ^ Achar KP (1986). "Analysis of male meiosis in seven species of Indian pill-millipede". Caryologia. 39 (39): 89–101. doi:10.1080/00087114.1986.10797770.
  54. ^ Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F (2008). "Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints". Cytogenetic and Genome Research. 122 (2): 132–8. doi:10.1159/000163090. PMID 19096208. S2CID 6674957.
  55. ^ Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R (2015). "The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1". PLOS ONE. 10 (12): e0143861. Bibcode:2015PLoSO..1043861S. doi:10.1371/journal.pone.0143861. PMC 4669136. PMID 26633808.
  56. ^ Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, et al. (January 2018). "Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae". GigaScience. 7 (1): 1–11. doi:10.1093/gigascience/gix113. PMC 5774507. PMID 29186418.
  57. ^ Jump up to: a b Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (October 2009). "Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway". PLOS Biology. 7 (10): e1000222. doi:10.1371/journal.pbio.1000222. PMC 2758576. PMID 19841734.
  58. ^ Jump up to: a b c d e f g h Sillero-Zubiri C, Hoffmann MJ, Mech D (2004). Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan. World Conservation Union. ISBN 978-2-8317-0786-0.[page needed]
  59. ^ Feng J, Liu Z, Cai X, Jan CC (January 2013). "Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones". G3. 3 (1): 31–40. doi:10.1534/g3.112.004846. PMC 3538341. PMID 23316437.
  60. ^ Jump up to: a b "Metapress – Discover More". 24 June 2016.
  61. ^ Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, et al. (2016). "First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops". Comparative Cytogenetics. 10 (3): 447–463. doi:10.3897/CompCytogen.v10i3.9469. PMC 5088355. PMID 27830052.
  62. ^ An F, Fan J, Li J, Li QX, Li K, Zhu W, et al. (2014). "Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes". PLOS ONE. 9 (4): e85991. Bibcode:2014PLoSO...985991A. doi:10.1371/journal.pone.0085991. PMC 3984080. PMID 24727655.
  63. ^ Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, et al. (2008). "Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes". Chromosome Research. 16 (8): 1215–31. doi:10.1007/s10577-008-1270-2. PMID 19051045. S2CID 952184.
  64. ^ Dowling HG, Price RM (1988). "A proposed new genus for Elaphe subocularis and Elaphe rosaliae" (PDF). The Snake. 20 (1): 52–63. Archived from the original (PDF) on 29 October 2014.
  65. ^ [1]: "Chromosomes of Elaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes".
  66. ^ The Jackson Laboratory Archived 2013-01-25 at the Wayback Machine: "Mice with chromosomal aberrations".
  67. ^ Jump up to: a b Milla SR, Isleib TG, Stalker HT (February 2005). "Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers". Genome. 48 (1): 1–11. doi:10.1139/g04-089. PMID 15729391.
  68. ^ Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA (March 2007). "Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta)". Age. 29 (1): 15–28. doi:10.1007/s11357-006-9016-6. PMC 2267682. PMID 19424827.
  69. ^ "Rnor_6.0 - Assembly - NCBI". www.ncbi.nlm.nih.gov.
  70. ^ Diupotex-Chong ME, Ocaña-Luna A, Sánchez-Ramírez M (July 2009). "Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico". Marine Biology Research. 5 (4): 399–403. doi:10.1080/17451000802534907. S2CID 84514554.
  71. ^ Geleta M, Herrera I, Monzón A, Bryngelsson T (2012). "Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers". TheScientificWorldJournal. 2012: 939820. doi:10.1100/2012/939820. PMC 3373144. PMID 22701376.
  72. ^ "Human Genome Project". National Center for Biotechnology Information. Retrieved 2009-04-29.
  73. ^ Gallagher, D. S.; Davis, S. K.; De Donato, M.; Burzlaff, J. D.; Womack, J. E.; Taylor, J. F.; Kumamoto, A. T. (November 1998). "A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae)". Chromosome Research. 6 (7): 505–513. doi:10.1023/a:1009268917856. ISSN 0967-3849. PMID 9886771. S2CID 21120780.
  74. ^ Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. (November 2016). "The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". eLife. 5. doi:10.7554/eLife.20062. PMC 5111886. PMID 27849518.
  75. ^ Jump up to: a b Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, et al. (May 2014). "The tobacco genome sequence and its comparison with those of tomato and potato". Nature Communications. 5: 3833. Bibcode:2014NatCo...5.3833S. doi:10.1038/ncomms4833. PMC 4024737. PMID 24807620.
  76. ^ Jump up to: a b Machida-Hirano R (March 2015). "Diversity of potato genetic resources". Breeding Science. 65 (1): 26–40. doi:10.1270/jsbbs.65.26. PMC 4374561. PMID 25931978.
  77. ^ Robinson TJ, Yang F, Harrison WR (2002). "Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha)". Cytogenetic and Genome Research. 96 (1–4): 223–7. doi:10.1159/000063034. PMID 12438803. S2CID 19327437.
  78. ^ "4.W4". Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan. pp. 61–94. Archived from the original on 2011-05-05.
  79. ^ Young WJ, Merz T, Ferguson-Smith MA, Johnston AW (June 1960). "Chromosome number of the chimpanzee, Pan troglodytes". Science. 131 (3414): 1672–3. Bibcode:1960Sci...131.1672Y. doi:10.1126/science.131.3414.1672. PMID 13846659. S2CID 36235641.
  80. ^ Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, et al. (December 2000). "Zebrafish comparative genomics and the origins of vertebrate chromosomes". Genome Research. 10 (12): 1890–902. doi:10.1101/gr.164800. PMID 11116085.
  81. ^ Brien S (2006). Atlas of mammalian chromosomes. Hoboken, NJ: Wiley-Liss. p. 2. ISBN 978-0-471-35015-6.
  82. ^ Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040. PMID 18464734.
  83. ^ Jump up to: a b Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK, et al. (December 2015). "A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii". Gene. 574 (2): 273–86. doi:10.1016/j.gene.2015.08.022. PMID 26275937.
  84. ^ "Hyrax: The Little Brother of the Elephant", Wildlife on One, BBC TV.
  85. ^ O'Brien SJ, Meninger JC, Nash WG (2006). Atlas of Mammalian Chromosomes. John Wiley & sons. p. 78. ISBN 978-0-471-35015-6.
  86. ^ Jump up to: a b Mäkinen A, Kuokkanen MT, Valtonen M (1986). "A chromosome-banding study in the Finnish and the Japanese raccoon dog". Hereditas. 105 (1): 97–105. doi:10.1111/j.1601-5223.1986.tb00647.x. PMID 3793521.
  87. ^ Ostrander EA (1 January 2012). Genetics of the Dog. CABI. pp. 250–. ISBN 978-1-84593-941-0.
  88. ^ Barnabe RC, Guimarães MA, Oliveira CA, Barnabe AH (2002). "Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (Cebus apella Linnaeus, 1758 )" (PDF). Brazilian Journal of Veterinary Research and Animal Science. 39 (6). doi:10.1590/S1413-95962002000600010.
  89. ^ Peigler, Richard S. ["Wild silks of the world." American Entomologist 39.3 (1993): 151–162. https://doi.org/10.1093/ae/39.3.151
  90. ^ Yoshido A, Yasukochi Y, Sahara K (June 2011). "Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera" (PDF). Insect Biochemistry and Molecular Biology. 41 (6): 370–7. doi:10.1016/j.ibmb.2011.02.005. hdl:2115/45607. PMID 21396446.
  91. ^ Mahendran B, Ghosh SK, Kundu SC (April 2006). "Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes". Journal of Genetics. 85 (1): 31–8. doi:10.1007/bf02728967. PMID 16809837. S2CID 11733404.
  92. ^ Yoshido A, Bando H, Yasukochi Y, Sahara K (June 2005). "The Bombyx mori karyotype and the assignment of linkage groups". Genetics. 170 (2): 675–85. doi:10.1534/genetics.104.040352. PMC 1450397. PMID 15802516.
  93. ^ Jump up to: a b Liu B, Davis TM (November 2011). "Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae)". BMC Plant Biology. 11: 157. doi:10.1186/1471-2229-11-157. PMC 3261831. PMID 22074487.
  94. ^ Claro, Françoise; Hayes, Hélène; Cribiu, Edmond Paul (November 1993). "The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger)". Journal of Heredity. 84 (6): 481–484. doi:10.1093/oxfordjournals.jhered.a111376. PMID 8270772. Retrieved 6 March 2021.
  95. ^ Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, et al. (2013). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLOS ONE. 8 (5): e62415. Bibcode:2013PLoSO...862415S. doi:10.1371/journal.pone.0062415. PMC 3648530. PMID 23667475.
  96. ^ Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, et al. (2007). "The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z". Genome Biology. 8 (11): R243. doi:10.1186/gb-2007-8-11-r243. PMC 2258203. PMID 18021405.
  97. ^ Svartman M, Stone G, Stanyon R (July 2006). "The ancestral eutherian karyotype is present in Xenarthra". PLOS Genetics. 2 (7): e109. doi:10.1371/journal.pgen.0020109. PMC 1513266. PMID 16848642.
  98. ^ de Oliveira EH, Tagliarini MM, dos Santos MS, O'Brien PC, Ferguson-Smith MA (2013). "Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species". PLOS ONE. 8 (7): e70071. Bibcode:2013PLoSO...870071D. doi:10.1371/journal.pone.0070071. PMC 3724671. PMID 23922908.
  99. ^ Smith HB (January 1927). "Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species". Genetics. 12 (1): 84–92. doi:10.1093/genetics/12.1.84. PMC 1200928. PMID 17246516.
  100. ^ Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003). "Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species". Cytogenetic and Genome Research. 103 (1–2): 173–84. doi:10.1159/000076309. PMID 15004483. S2CID 23508684.
  101. ^ https://www.ncbi.nlm.nih.gov/genome/guide/dog/
  102. ^ Maeda J, Yurkon CR, Fujisawa H, Kaneko M, Genet SC, Roybal EJ, et al. (2012). "Genomic instability and telomere fusion of canine osteosarcoma cells". PLOS ONE. 7 (8): e43355. Bibcode:2012PLoSO...743355M. doi:10.1371/journal.pone.0043355. PMC 3420908. PMID 22916246.
  103. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode:2005Natur.438..803L. doi:10.1038/nature04338. PMID 16341006.
  104. ^ Aslam ML, Bastiaansen JW, Crooijmans RP, Vereijken A, Megens HJ, Groenen MA (November 2010). "A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes". BMC Genomics. 11: 647. doi:10.1186/1471-2164-11-647. PMC 3091770. PMID 21092123.
  105. ^ Jump up to: a b Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, et al. (April 2010). "Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes". BMC Genomics. 11: 261. doi:10.1186/1471-2164-11-261. PMC 2882929. PMID 20416060.
  106. ^ "Saccharum officinarum L. | Plants of the World Online | Kew Science". Retrieved 2017-07-02.
  107. ^ Henry RJ, Kole C (15 August 2010). Genetics, Genomics and Breeding of Sugarcane. CRC Press. p. 70. ISBN 978-1-4398-4860-9.
  108. ^ Ohno S, Stenius C, Christian LC, Becak W, Becak ML (August 1964). "Chromosomal uniformity in the avian subclass Carinatae". Chromosoma. 15 (3): 280–8. doi:10.1007/BF00321513. PMID 14196875. S2CID 12310455.
  109. ^ Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516
  110. ^ Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701
  111. ^ Jump up to: a b Schmid M, Fernández-Badillo A, Feichtinger W, Steinlein C, Roman JI (1988). "On the highest chromosome number in mammals". Cytogenetics and Cell Genetics. 49 (4): 305–8. doi:10.1159/000132683. PMID 3073914.
  112. ^ Hosseini SJ, Elahi E, Raie RM (2004). "The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus". Iranian Int. J. Sci. 5 (1): 13–23.
  113. ^ Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, et al. (2014). "Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes". Comparative Cytogenetics. 8 (3): 233–48. doi:10.3897/CompCytogen.v8i3.7718. PMC 4205492. PMID 25349674.
  114. ^ Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N (September 1999). "Discovery of tetraploidy in a mammal". Nature. 401 (6751): 341. Bibcode:1999Natur.401..341G. doi:10.1038/43815. PMID 10517628. S2CID 1808633.
  115. ^ Gallardo MH, González CA, Cebrián I (August 2006). "Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae)". Genomics. 88 (2): 214–21. doi:10.1016/j.ygeno.2006.02.010. PMID 16580173.
  116. ^ Contreras LC, Torres-Mura JC, Spotorno AE (May 1990). "The largest known chromosome number for a mammal, in a South American desert rodent". Experientia. 46 (5): 506–8. doi:10.1007/BF01954248. PMID 2347403. S2CID 33553988.
  117. ^ Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, et al. (2016). "Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes)". Molecular Cytogenetics. 9: 4. doi:10.1186/s13039-016-0215-2. PMC 4719708. PMID 26793275.
  118. ^ Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, et al. (March 2017). "Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula)". BMC Genetics. 18 (1): 19. doi:10.1186/s12863-017-0484-8. PMC 5335500. PMID 28253860.
  119. ^ Islam-Faridi N, Sakhanokho HF, Dana Nelson C (August 2020). "New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life"". Scientific Reports. 10 (1): 13174. Bibcode:2020NatSR..1013174I. doi:10.1038/s41598-020-68697-6. PMC 7413363. PMID 32764541.
  120. ^ Eschmeyer WM. "Family Petromyzontidae – Northern lampreys".
  121. ^ Flora of North America Editorial Committee (1993). Flora of North America. .
  122. ^ Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE (July 2005). "Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies". Nature. 436 (7049): 385–9. Bibcode:2005Natur.436..385L. doi:10.1038/nature03704. PMID 16034417. S2CID 4431492.
  123. ^ "Morus nigra (black mulberry)". www.cabi.org. Retrieved 2020-08-29.
  124. ^ Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, et al. (2015). "Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny". PLOS ONE. 10 (8): e0135411. Bibcode:2015PLoSO..1035411Z. doi:10.1371/journal.pone.0135411. PMC 4534381. PMID 26266951.
  125. ^ Jump up to: a b Lukhtanov VA (2015). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–90. doi:10.3897/CompCytogen.v9i4.5760. PMC 4698580. PMID 26753083.
  126. ^ Lukhtanov VA (2015-07-10). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–90. doi:10.3897/compcytogen.v9i4.5760. PMC 4698580. PMID 26753083.
  127. ^ Sinha BM, Srivastava DP, Jha J (1979). "Occurrence of Various Cytotypes of Ophioglossum ReticulatumL. In a Population from N. E. India". Caryologia. 32 (2): 135–146. doi:10.1080/00087114.1979.10796781.
  128. ^ Mochizuki K (2010). "DNA rearrangements directed by non-coding RNAs in ciliates". Wiley Interdisciplinary Reviews. RNA. 1 (3): 376–87. doi:10.1002/wrna.34. PMC 3746294. PMID 21956937.
  129. ^ Miller, Greg (17 September 2014). "This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex". Wired. Retrieved 1 June 2021.
  130. ^ Kumar S, Kumari R (June 2015). "Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements". Journal of Genetics. 94 (2): 171–6. doi:10.1007/s12041-015-0504-2. PMID 26174664. S2CID 14181659.
  131. ^ Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, et al. (2013-01-29). "The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes". PLOS Biology. 11 (1): e1001473. doi:10.1371/journal.pbio.1001473. PMC 3558436. PMID 23382650.
  132. ^ Yong E (6 February 2013). "You Have 46 Chromosomes. This Pond Creature Has 15,600". National Geographic.

Further reading[]

External links[]

Retrieved from ""