Octagonal bipyramid

From Wikipedia, the free encyclopedia
Octagonal bipyramid
Octagonal bipyramid.png
Typebipyramid
Faces16 triangles
Edges24
Vertices10
Schläfli symbol{ } + {8}
Coxeter diagramCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.png
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node f1.png
Symmetry groupD8h, [8,2], (*228), order 32
Rotation groupD8, [8,2]+, (228), order 16
Dual polyhedronoctagonal prism
Face configurationV4.4.8
Propertiesconvex, face-transitive

The octagonal bipyramid is one of the infinite set of bipyramids, dual to the infinite prisms. If an octagonal bipyramid is to be face-transitive, all faces must be isosceles triangles. 16-sided dice are often octagonal bipyramids.

Images[]

It can be drawn as a tiling on a sphere which also represents the fundamental domains of [4,2], *422 symmetry:

Spherical octagonal bipyramid.png

Related polyhedra[]

"Regular" right (symmetric) n-gonal bipyramids:
Bipyramid name Digonal bipyramid Triangular bipyramid
(See: J12)
Square bipyramid
(See: O)
Pentagonal bipyramid
(See: J13)
Hexagonal bipyramid Heptagonal bipyramid Octagonal bipyramid Enneagonal bipyramid Decagonal bipyramid ... Apeirogonal bipyramid
Polyhedron image Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png ...
Spherical tiling image Spherical digonal bipyramid.svg Spherical trigonal bipyramid.png Spherical square bipyramid.svg Spherical pentagonal bipyramid.png Spherical hexagonal bipyramid.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid.png Spherical enneagonal bipyramid.png Spherical decagonal bipyramid.png Plane tiling image Infinite bipyramid.svg
Face config. V2.4.4 V3.4.4 V4.4.4 V5.4.4 V6.4.4 V7.4.4 V8.4.4 V9.4.4 V10.4.4 ... V∞.4.4
Coxeter diagram CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 9.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 10.pngCDel node.png ... CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Omnitruncated
figure
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2-5-4-omnitruncated.svg
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.∞
Omnitruncated
duals
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.png
V4.8.6
1-uniform 2 dual.svg
V4.8.8
H2-5-4-kisrhombille.svg
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.∞

External links[]

  • Weisstein, Eric W. "Dipyramid". MathWorld.
  • Virtual Reality Polyhedra The Encyclopedia of Polyhedra


Retrieved from ""