Truncated tetraapeirogonal tiling

From Wikipedia, the free encyclopedia
Truncated tetraapeirogonal tiling
Truncated tetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.8.∞
Schläfli symbol tr{∞,4} or
Wythoff symbol 2 ∞ 4 |
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png or CDel node 1.pngCDel split1-i4.pngCDel nodes 11.png
Symmetry group [∞,4], (*∞42)
Dual
Properties Vertex-transitive

In geometry, the truncated tetraapeirogonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one apeirogon on each vertex. It has Schläfli symbol of tr{∞,4}.

Related polyhedra and tilings[]

Paracompact uniform tilings in [∞,4] family
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 24i-1.png H2 tiling 24i-3.png H2 tiling 24i-2.png H2 tiling 24i-6.png H2 tiling 24i-4.png H2 tiling 24i-5.png H2 tiling 24i-7.png
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 24ib.png H2chess 24if.png H2chess 24ia.png H2chess 24ie.png H2chess 24ic.png H2chess 24id.png H2checkers 24i.png
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-ii.pngCDel nodes 10lu.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
H2 tiling 44i-1.png Uniform tiling i42-h01.png H2 tiling 2ii-1.png Uniform tiling i42-snub.png
Alternation duals
CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png
H2chess 44ib.png H2 tiling 2ii-4.png
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Omnitruncated
figure
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2-5-4-omnitruncated.svg
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.∞
Omnitruncated
duals
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.png
V4.8.6
1-uniform 2 dual.svg
V4.8.8
H2-5-4-kisrhombille.svg
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.∞
*nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n
Symmetry
*nn2
[n,n]
Spherical Euclidean Compact hyperbolic Paracomp.
*222
[2,2]
*332
[3,3]
*442
[4,4]
*552
[5,5]
*662
[6,6]
*772
[7,7]
*882
[8,8]...
*∞∞2
[∞,∞]
Figure Spherical square prism.png Uniform tiling 332-t012.png Uniform tiling 44-t012.png H2 tiling 255-7.png H2 tiling 266-7.png H2 tiling 277-7.png H2 tiling 288-7.png H2 tiling 2ii-7.png
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
Dual Spherical square bipyramid.png Spherical tetrakis hexahedron.png 1-uniform 2 dual.svg H2checkers 245.png H2checkers 246.png H2checkers 247.png H2checkers 248.png H2checkers 24i.png
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞

Symmetry[]

The dual of this tiling represents the fundamental domains of [∞,4], (*∞42) symmetry. There are 15 small index subgroups constructed from [∞,4] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The subgroup index-8 group, [1+,∞,1+,4,1+] (∞2∞2) is the commutator subgroup of [∞,4].

A larger subgroup is constructed as [∞,4*], index 8, as [∞,4+], (4*∞) with gyration points removed, becomes (*∞∞∞∞) or (*∞4), and another [∞*,4], index ∞ as [∞+,4], (∞*2) with gyration points removed as (*2). And their direct subgroups [∞,4*]+, [∞*,4]+, subgroup indices 16 and ∞ respectively, can be given in orbifold notation as (∞∞∞∞) and (2).

See also[]

  • Tilings of regular polygons
  • List of uniform planar tilings

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[]

Retrieved from ""