Cantic octagonal tiling

From Wikipedia, the free encyclopedia
Cantic octagonal tiling
Cantic octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.6.4.6
Schläfli symbol h2{8,3}
Wythoff symbol 4 3 | 3
Coxeter diagram CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png = CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry group [(4,3,3)], (*433)
Dual
Properties Vertex-transitive

In geometry, the tritetratrigonal tiling or shieldotritetragonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2(4,3,3). It can also be named as a cantic octagonal tiling, h2{8,3}.

Dual tiling[]

Uniform dual tiling 433-t12.png

Related polyhedra and tiling[]

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node.png CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node.png CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node.png CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 334-1.png H2 tiling 334-3.png H2 tiling 334-2.png H2 tiling 334-6.png H2 tiling 334-4.png H2 tiling 334-5.png H2 tiling 334-7.png Uniform tiling 433-snub2.png
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
Uniform dual tiling 433-t0.png Uniform dual tiling 433-t01.png Uniform dual tiling 433-t0.png Uniform dual tiling 433-t12.png H2-8-3-dual.svg Uniform dual tiling 433-t12.png H2-8-3-kis-dual.svg Uniform dual tiling 433-snub.png
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
*n33 orbifold symmetries of cantic tilings: 3.6.n.6
Symmetry
*n32
[1+,2n,3]
= [(n,3,3)]
Spherical Euclidean Compact Hyperbolic Paracompact
*233
[1+,4,3]
= [3,3]
*333
[1+,6,3]
= [(3,3,3)]
*433
[1+,8,3]
= [(4,3,3)]
*533
[1+,10,3]
= [(5,3,3)]
*633...
[1+,12,3]
= [(6,3,3)]
*∞33
[1+,∞,3]
= [(∞,3,3)]
Coxeter
Schläfli
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
h2{4,3}
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{6,3}
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{8,3}
CDel node h1.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel label5.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{10,3}
CDel node h1.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{12,3}
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{∞,3}
Cantic
figure
Spherical cantic cube.png Uniform tiling 333-t12.png H2 tiling 334-6.png H2 tiling 335-6.png H2 tiling 336-6.png H2 tiling 33i-6.png
Vertex 3.6.2.6 3.6.3.6 3.6.4.6
N33 fundamental domain t01.png
Domain
332 fundamental domain t01.png 333 fundamental domain t01.png 433 fundamental domain t01.png 533 fundamental domain t01.png 633 fundamental domain t01.png I33 fundamental domain t01.png
Wythoff 2 3 | 3 3 3 | 3 4 3 | 3 5 3 | 3 6 3 | 3 ∞ 3 | 3
Dual
figure
Spherical triakis tetrahedron.png Rhombic star tiling 3 vertices.png Uniform dual tiling 433-t12.png
Face V3.6.2.6 V3.6.3.6 V3.6.4.6 V3.6.5.6 V3.6.6.6 V3.6.∞.6

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also[]

External links[]

Retrieved from ""