Uniform tiling

From Wikipedia, the free encyclopedia

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere.

Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain. A planar symmetry group has a polygonal fundamental domain and can be represented by the group name represented by the order of the mirrors in sequential vertices.

A fundamental domain triangle is (p q r), and a right triangle (p q 2), where p, q, r are whole numbers greater than 1. The triangle may exist as a spherical triangle, a Euclidean plane triangle, or a hyperbolic plane triangle, depending on the values of p, q and r.

There are a number of symbolic schemes for naming these figures, from a modified Schläfli symbol for right triangle domains: (p q 2) → {p, q}. The Coxeter-Dynkin diagram is a triangular graph with p, q, r labeled on the edges. If r = 2, the graph is linear since order-2 domain nodes generate no reflections. The Wythoff symbol takes the 3 integers and separates them by a vertical bar (|). If the generator point is off the mirror opposite a domain node, it is given before the bar.

Finally tilings can be described by their vertex configuration, the sequence of polygons around each vertex.

All uniform tilings can be constructed from various operations applied to regular tilings. These operations as named by Norman Johnson are called truncation (cutting vertices), rectification (cutting vertices until edges disappear), and cantellation (cutting edges). Omnitruncation is an operation that combines truncation and cantellation. Snubbing is an operation of alternate truncation of the omnitruncated form. (See Uniform polyhedron#Wythoff construction operators for more details.)

Coxeter groups[]

Coxeter groups for the plane define the Wythoff construction and can be represented by Coxeter-Dynkin diagrams:

For groups with whole number orders, including:

Euclidean plane
Orbifold
symmetry
Coxeter group Coxeter
diagram
notes
Compact
*333 (3 3 3) [3[3]] CDel node.pngCDel split1.pngCDel branch.png 3 reflective forms, 1 snub
*442 (4 4 2) [4,4] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png 5 reflective forms, 1 snub
*632 (6 3 2) [6,3] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png 7 reflective forms, 1 snub
*2222 (∞ 2 ∞ 2) × [∞,2,∞] CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png 3 reflective forms, 1 snub
Noncompact (frieze)
*∞∞ (∞) [∞] CDel node.pngCDel infin.pngCDel node.png
*22∞ (2 2 ∞) × [∞,2] CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png 2 reflective forms, 1 snub
Hyperbolic plane
Orbifold
symmetry
Coxeter group Coxeter
diagram
notes
Compact
*pq2 (p q 2) [p,q] CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png 2(p+q) < pq
*pqr (p q r) [(p,q,r)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.png pq+pr+qr < pqr
Paracompact
*∞p2 (p ∞ 2) [p,∞] CDel node.pngCDel p.pngCDel node.pngCDel infin.pngCDel node.png p>=3
*∞pq (p q ∞) [(p,q,∞)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel infin.png p,q>=3, p+q>6
*∞∞p (p ∞ ∞) [(p,∞,∞)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.png p>=3
*∞∞∞ (∞ ∞ ∞) [(∞,∞,∞)] CDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.png

Uniform tilings of the Euclidean plane[]

There are symmetry groups on the Euclidean plane constructed from fundamental triangles: (4 4 2), (6 3 2), and (3 3 3). Each is represented by a set of lines of reflection that divide the plane into fundamental triangles.

These symmetry groups create 3 regular tilings, and 7 semiregular ones. A number of the semiregular tilings are repeated from different symmetry constructors.

A prismatic symmetry group represented by (2 2 2 2) represents by two sets of parallel mirrors, which in general can have a rectangular fundamental domain. It generates no new tilings.

A further prismatic symmetry group represented by (∞ 2 2) which has an infinite fundamental domain. It constructs two uniform tilings, the apeirogonal prism and apeirogonal antiprism.

The stacking of the finite faces of these two prismatic tilings constructs one non-Wythoffian uniform tiling of the plane. It is called the elongated triangular tiling, composed of alternating layers of squares and triangles.

Right angle fundamental triangles: (p q 2)

(p q 2) Fund.
triangles
Parent Truncated Rectified Bitruncated Birectified
(dual)
Cantellated Omnitruncated
(Cantitruncated)
Snub
Wythoff symbol q | p 2 2 q | p 2 | p q 2 p | q p | q 2 p q | 2 p q 2 | | p q 2
Schläfli symbol {p,q} t{p,q} r{p,q} 2t{p,q}=t{q,p} 2r{p,q}={q,p} rr{p,q} tr{p,q} sr{p,q}
Coxeter diagram CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
Vertex config. pq q.2p.2p (p.q)2 p. 2q.2q qp p. 4.q.4 4.2p.2q 3.3.p. 3.q
Square tiling
(4 4 2)
Tiling Dual Semiregular V4-8-8 Tetrakis Square-2-color-zoom.svg
0
Uniform tiling 44-t0.svg
{4,4}
Uniform tiling 44-t01.svg
4.8.8
Uniform tiling 44-t1.svg
4.4.4.4
Uniform tiling 44-t12.svg
4.8.8
Uniform tiling 44-t2.svg
{4,4}
Uniform tiling 44-t02.svg
4.4.4.4
Uniform tiling 44-t012.svg
4.8.8
Uniform tiling 44-snub.svg
3.3.4.3.4
Hexagonal tiling
(6 3 2)
Tile V46b.svg
0
Uniform tiling 63-t0.svg
{6,3}
Uniform tiling 63-t01.svg
3.12.12
Uniform tiling 63-t1.svg
3.6.3.6
Uniform tiling 63-t12.svg
6.6.6
Uniform tiling 63-t2.svg
{3,6}
Uniform tiling 63-t02.svg
3.4.6.4
Uniform tiling 63-t012.svg
4.6.12
Uniform tiling 63-snub.svg
3.3.3.3.6

General fundamental triangles: (p q r)

Wythoff symbol
(p q r)
Fund.
triangles
q | p r r q | p r | p q r p | q p | q r p q | r p q r | | p q r
Coxeter diagram CDel 3.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.png CDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.png CDel 3.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.png CDel 3.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.png
Vertex config. (p.q)r r.2p.q.2p (p.r)q q.2r.p. 2r (q.r)p q.2r.p. 2r r.2q.p. 2q 3.r.3.q.3.p
Triangular
(3 3 3)
Tiling Regular 3-6 Triangular.svg
0
Uniform tiling 333-t0.svg
(3.3)3
Uniform tiling 333-t01.png
3.6.3.6
Uniform tiling 333-t1.svg
(3.3)3
Uniform tiling 333-t12.png
3.6.3.6
Uniform tiling 333-t2.png
(3.3)3
Uniform tiling 333-t02.png
3.6.3.6
Uniform tiling 333-t012.svg
6.6.6
Uniform tiling 333-snub.png
3.3.3.3.3.3

Non-simplical fundamental domains

The only possible fundamental domain in Euclidean 2-space that is not a simplex is the rectangle (∞ 2 ∞ 2), with Coxeter diagram: CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png. All forms generated from it become a square tiling.

Uniform tilings of the hyperbolic plane[]

There are infinitely many uniform tilings of convex regular polygons on the hyperbolic plane, each based on a different reflective symmetry group (p q r).

A sampling is shown here with a Poincaré disk projection.

The Coxeter-Dynkin diagram is given in a linear form, although it is actually a triangle, with the trailing segment r connecting to the first node.

Further symmetry groups exist in the hyperbolic plane with quadrilateral fundamental domains starting with (2 2 2 3), etc., that can generate new forms. As well there's fundamental domains that place vertices at infinity, such as (∞ 2 3), etc.

Right angle fundamental triangles: (p q 2)

(p q 2) Fund.
triangles
Parent Truncated Rectified Bitruncated Birectified
(dual)
Cantellated Omnitruncated
(Cantitruncated)
Snub
Wythoff symbol q | p 2 2 q | p 2 | p q 2 p | q p | q 2 p q | 2 p q 2 | | p q 2
Schläfli symbol t{p,q} t{p,q} r{p,q} 2t{p,q}=t{q,p} 2r{p,q}={q,p} rr{p,q} tr{p,q} sr{p,q}
Coxeter diagram CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
Vertex figure pq (q.2p.2p) (p.q.p.q) (p. 2q.2q) qp (p. 4.q.4) (4.2p.2q) (3.3.p. 3.q)
(5 4 2) H2-5-4-kisrhombille.svg
V4.8.10
H2-5-4-dual.svg
{5,4}
H2-5-4-trunc-dual.svg
4.10.10
H2-5-4-rectified.svg
4.5.4.5
H2-5-4-trunc-primal.svg
5.8.8
H2-5-4-primal.svg
{4,5}
H2-5-4-cantellated.svg
4.4.5.4
H2-5-4-omnitruncated.svg
4.8.10
H2-5-4-snub.svg
3.3.4.3.5
(5 5 2) Order-5 bisected pentagonal tiling.png
V4.10.10
Uniform tiling 552-t0.png
{5,5}
Uniform tiling 552-t01.png
5.10.10
Uniform tiling 552-t1.png
5.5.5.5
Uniform tiling 552-t12.png
5.10.10
Uniform tiling 552-t2.png
{5,5}
Uniform tiling 552-t02.png
5.4.5.4
Uniform tiling 552-t012.png
4.10.10
Uniform tiling 552-snub.png
3.3.5.3.5
(7 3 2) 3-7 kisrhombille.svg
V4.6.14
Heptagonal tiling.svg
{7,3}
Truncated heptagonal tiling.svg
3.14.14
Triheptagonal tiling.svg
3.7.3.7
Truncated order-7 triangular tiling.svg
7.6.6
Order-7 triangular tiling.svg
{3,7}
Rhombitriheptagonal tiling.svg
3.4.7.4
Truncated triheptagonal tiling.svg
4.6.14
Snub triheptagonal tiling.svg
3.3.3.3.7
(8 3 2) H2-8-3-kisrhombille.svg
V4.6.16
H2-8-3-dual.svg
{8,3}
H2-8-3-trunc-dual.svg
3.16.16
H2-8-3-rectified.svg
3.8.3.8
H2-8-3-trunc-primal.svg
8.6.6
H2-8-3-primal.svg
{3,8}
H2-8-3-cantellated.svg
3.4.8.4
H2-8-3-omnitruncated.svg
4.6.16
H2-8-3-snub.svg
3.3.3.3.8

General fundamental triangles (p q r)

Wythoff symbol
(p q r)
Fund.
triangles
q | p r r q | p r | p q r p | q p | q r p q | r p q r | | p q r
Coxeter diagram CDel 3.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.png CDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.png CDel 3.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.png CDel 3.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.png CDel 3.pngCDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.png
Vertex figure (p.r)q (r.2p.q.2p) (p.q)r (q.2r.p. 2r) (q.r)p (r.2q.p. 2q) (2p.2q.2r) (3.r.3.q.3.p)
(4 3 3) Uniform dual tiling 433-t012.png
V6.6.8
Uniform tiling 433-t0.png
(3.4)3
Uniform tiling 433-t01.png
3.8.3.8
Uniform tiling 433-t1.png
(3.4)3
Uniform tiling 433-t12.png
3.6.4.6
Uniform tiling 433-t2.png
(3.3)4
Uniform tiling 433-t02.png
3.6.4.6
Uniform tiling 433-t012.png
6.6.8
Uniform tiling 433-snub2.png
3.3.3.3.3.4
(4 4 3) Uniform dual tiling 443-t012.png
V6.8.8
Uniform tiling 443-t0.png
(3.4)4
Uniform tiling 443-t01.png
3.8.4.8
Uniform tiling 443-t1.png
(4.4)3
Uniform tiling 443-t12.png
3.6.4.6
Uniform tiling 443-t2.png
(3.4)4
Uniform tiling 443-t02.png
4.6.4.6
Uniform tiling 443-t012.png
6.8.8
Uniform tiling 443-snub1.png
3.3.3.4.3.4
(4 4 4) Uniform dual tiling 444-t012.png
V8.8.8
Uniform tiling 444-t0.png
(4.4)4
Uniform tiling 444-t01.png
4.8.4.8
Uniform tiling 444-t1.png
(4.4)4
Uniform tiling 444-t12.png
4.8.4.8
Uniform tiling 444-t2.png
(4.4)4
Uniform tiling 444-t02.png
4.8.4.8
Uniform tiling 444-t012.png
8.8.8
Uniform tiling 444-snub.png
3.4.3.4.3.4

Expanded lists of uniform tilings[]

There are a number ways the list of uniform tilings can be expanded:

  1. Vertex figures can have retrograde faces and turn around the vertex more than once.
  2. Star polygon tiles can be included.
  3. Apeirogons, {∞}, can be used as tiling faces.
  4. The restriction that tiles meet edge-to-edge can be relaxed, allowing additional tilings such as the Pythagorean tiling.

Symmetry group triangles with retrogrades include:

(4/3 4/3 2) (6 3/2 2) (6/5 3 2) (6 6/5 3) (6 6 3/2)

Symmetry group triangles with infinity include:

(4 4/3 ∞) (3/2 3 ∞) (6 6/5 ∞) (3 3/2 ∞)

Branko Grünbaum, in the 1987 book Tilings and patterns, in section 12.3 enumerates a list of 25 uniform tilings, including the 11 convex forms, and adds 14 more he calls hollow tilings which included the first two expansions above, star polygon faces and vertex figures.

H.S.M. Coxeter et al., in the 1954 paper 'Uniform polyhedra', in Table 8: Uniform Tessellations, uses the first three expansions and enumerates a total of 38 uniform tilings. If a tiling made of 2 apeirogons is also counted, the total can be considered 39 uniform tilings.

The vertex figures for the six tilings with convex regular polygons and apeirogon faces.(The Wythoff symbol is given in red.)
Vertex figures for 21 uniform tilings.

Besides the 11 convex solutions, the 28 uniform star tilings listed by Coxeter et al., grouped by shared edge graphs, are shown below. For clarity, apeirogons are not coloured in the first seven tilings, and thereafter only the polygons around one vertex are coloured.

This set is not proved complete.

Frieze group symmetry
#[1] Diagram Vertex
Config
Wythoff Symmetry Notes
I1 Apeirogonal tiling.svg ∞.∞ p1m1 (Two half-plane tiles, order-2 apeirogonal tiling)
I2 Infinite prism alternating.svg 4.4.∞ ∞ 2 | 2 p1m1 Apeirogonal prism
I3 Infinite antiprism.svg 3.3.3.∞ | 2 2 ∞ p11g Apeirogonal antiprism
Wallpaper group symmetry
McNeill[1] Grünbaum[2] Edge
diagram
Solid Vertex
Config
Wythoff Symmetry
I4 4.oo.4-3.oo tiling frame.png Star tiling sha.gif 4.∞.4/3.∞
4.∞.-4.∞
4/3 4 | ∞ p4m
I5 3.oo.3.oo.3oo tiling-frame.png Star tiling ditatha.gif (3.∞.3.∞.3.∞)/2 3/2 | 3 ∞ p6m
I6 6.oo.6-5.oo tiling-frame.png Star tiling hoha.gif 6.∞.6/5.∞
6.∞.-6.∞
6/5 6 | ∞
I7 Star tiling tha.gif ∞.3.∞.3/2
∞.3.∞.-3
3/2 3 | ∞
1 15 12.3-2.12.6 tiling-frame.png Star tiling shothat.gif 3/2.12.6.12
-3.12.6.12
3/2 6 | 6 p6m
16 Star tiling sraht.gif 4.12.4/3.12/11
4.12.4/3.-12
2 6 (3/2 6/2) |
2 8-3.4.8-3.oo tiling-frame.png Star tiling sossa.gif 8/3.4.8/3.∞ 4 ∞ | 4/3 p4m
7 Star tiling sost.gif 8/3.8.8/5.8/7
8/3.8.-8/3.-8
4/3 4 (4/2 ∞/2) |
Star tiling gossa.gif 8.4/3.8.∞
8.-4.8.∞
4/3 ∞ | 4
3 12-5.6.12-5.oo tiling frame.svg Star tiling shaha.gif 12/5.6.12/5.∞ 6 ∞ | 6/5 p6m
21 Star tiling huht.gif 12/5.12.12/7.12/11
12/5.12.-12/5.-12
6/5 6 (6/2 ∞/2) |
Star tiling ghaha.gif 12.6/5.12.∞
12.-6.12.∞
6/5 ∞ | 6
4 18 12-5.3.12-5.6-5 tiling-frame.png Star tiling ghothat.gif 12/5.3.12/5.6/5 3 6 | 6/5 p6m
19 Star tiling graht.gif 12/5.4.12/7.4/3
12/5.4.-12/5.-4
2 6/5 (3/2 6/2) |
17 Star tiling qrothat.gif 4.3/2.4.6/5
4.-3.4.-6
3/2 6 | 2
5 8.8-3.oo tiling-frame.png Star tiling satsa.gif 8.8/3.∞ 4/3 4 ∞ | p4m
6 12.12-5.oo tiling-frame.png Star tiling hatha.gif 12.12/5.∞ 6/5 6 ∞ | p6m
7 6 8.4-3.8-5 tiling-frame.png Star tiling qrasquit.gif 8.4/3.8/5
4.8.-8/3
2 4/3 4 | p4m
8 13 6.4-3.12-7 tiling-frame.png Star tiling quitothit.gif 6.4/3.12/7
-6.4.12/5
2 3 6/5 | p6m
9 12 12.6-5.12-7 tiling-frame.png Star tiling thotithit.gif 12.6/5.12/7
-12.6.12/5
3 6/5 6 | p6m
10 8 4.8-5.8-5 tiling-frame.png Star tiling quitsquat.gif 4.8/5.8/5
-4.8/3.8/3
2 4 | 4/3 p4m
11 22 12-5.12-5.3-2 tiling-frame.png Star tiling quothat.gif 12/5.12/5.3/2
12/5.12/5.-3
2 3 | 6/5 p6m
12 2 3-2.3-2.3-2.4.4 tiling-frame.png Star tiling retrat.gif 4.4.3/2.3/2.3/2
4.4.-3.-3.-3
non-Wythoffian cmm
13 4 Star tiling rasisquat.gif 4.3/2.4.3/2.3/2
4.-3.4.-3.-3
| 2 4/3 4/3 p4g
14 Star tiling snassa.gif 3.4.3.4/3.3.∞
3.4.3.-4.3.∞
| 4/3 4 ∞ p4g

Self-dual tilings[]

The {4,4} square tiling (black) with its dual (red).

Tilings can also be self-dual. The square tiling, with Schläfli symbol {4,4}, is self-dual; shown here are two square tilings (red and black), dual to each other.

Uniform tilings using star polygons[]

This example, 4.8*
π/8
.4**
π/4
.8*
π/4
is considered not edge-to-edge due to the large square, although it can be interpreted as star polygon with pairs of colinear edges.

Seeing a star polygon as a nonconvex polygon with twice as many sides allows star polygons, and counting these as regular polygons allows them to be used in a uniform tiling. These polygons are labeled as {Nα} for a isotoxal nonconvex 2N-gon with external dihedral angle α. Its external vertices are labeled as N*
α
, and internal N**
α
. This expansion to the definition requires corners with only 2 polygons to not be considered vertices. The tiling is defined by its vertex configuration as a cyclic sequence of convex and nonconvex polygons around every vertex. There are 4 such uniform tilings with adjustable angles α, and 18 uniform tilings that only work with specific angles.[3]

All of these tilings are topologically related to the ordinary uniform tilings with convex regular polygons, with 2-valence vertices ignored, and square faces as digons, reduced to a single edge.

4 uniform tilings with star polygons, angle α
Uniform-star-tiling-36s6s-e.svg
3.6*
α
.6**
α

Topological 3.12.12
Uniform-star-tiling-44s4s-a.svg
4.4*
α
.4**
α

Topological 4.8.8
Uniform-star-tiling-63s3s-a.svg
6.3*
α
.3**
α

Topological 6.6.6
Uniform-star-tiling-33s33s-a.svg
3.3*
α
.3.3**
α

Topological 3.6.3.6
17 uniform tilings with star polygons
Uniform-star-tiling-g.svg
4.6.4*
π/6
.6
Topological 4.4.4.4
Uniform-star-tiling-l.svg
(8.4*
π/4
)2
Topological 4.4.4.4
Uniform-star-tiling-o.svg
12.12.4*
π/3

Topological 4.8.8
Uniform-star-tiling-c.svg
3.3.8*
π/12
.4**
π/3
.8*
π/12

Topological 4.8.8
Uniform-star-tiling-b.svg
3.3.8*
π/12
.3.4.3.8*
π/12

Topological 4.8.8
Uniform-star-tiling-e.svg
3.4.8.3.8*
π/12

Topological 4.8.8
Uniform-star-tiling-q.svg
5.5.4*
4π/10
.5.4*
π/10

Topological 3.3.4.3.4
Uniform-star-tiling-i.svg
4.6*
π/6
.6**
π/2
.6*
π/6

Topological 6.6.6
Uniform-star-tiling-h.svg
(4.6*
π/6
)3
Topological 6.6.6
Uniform-star-tiling-m.svg
9.9.6*
4π/9

Topological 6.6.6
Uniform-star-tiling-j.svg
(6.6*
π/3
)2
Topological 3.6.3.6
Uniform-star-tiling-n.svg
(12.3*
π/6
)2
Topological 3.6.3.6
Uniform-star-tiling-d.svg
3.4.6.3.12*
π/6

Topological 4.6.12
Uniform-star-tiling-a.svg
3.3.3.12*
π/6
.3.3.12*
π/6

Topological 3.12.12
Uniform-star-tiling-p.svg
18.18.3*
2π/9

Topological 3.12.12
Uniform-star-tiling-f.svg
3.6.6*
π/3
.6
Topological 3.4.6.4
Uniform-star-tiling-k.svg
8.3*
π/12
.8.6*
5π/12

Topological 3.4.6.4
Uniform-star-tiling-9393s.svg
9.3.9.3*
π/9

Topological 3.6.3.6

Uniform tilings using alternating polygons[]

Star polygons of the form {pα} can also represent convex 2p-gons alternating two angles, the simplest being a rhombus {2α}. Allowing these as regular polygons, creates more uniform tilings, with some example below.

Examples
Hexatile-rhombic-snub-hex.svg
3.2*.6.2**
Topological 3.4.6.4
Octatile-rhombic0.svg
4.4.4.4
Topological 4.4.4.4
Octatile-rhombic1.svg
(2*
π/6
.2**
π/3
)2
Topological 4.4.4.4
Octatile-rhombic2.svg
2*
π/6
.2*
π/6
.2**
π/3
.2**
π/3

Topological 4.4.4.4
Octatile-rhombic3.svg
4.2*
π/6
.4.2**
π/3

Topological 4.4.4.4

See also[]

References[]

  1. ^ a b Jim McNeill
  2. ^ Tiles and Patterns, Table 12.3.1 p.640
  3. ^ Tilings and Patterns Branko Gruenbaum, G.C. Shephard, 1987. 2.5 Tilings using star polygons, pp.82-85.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. W. H. Freeman and Company. ISBN 0-7167-1193-1. (Star tilings section 12.3)
  • H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller, Uniform polyhedra, Phil. Trans. 1954, 246 A, 401–50 JSTOR 91532 (Table 8)

External links[]

Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
Retrieved from ""