Order-6 octagonal tiling

From Wikipedia, the free encyclopedia
Order-6 octagonal tiling
Order-6 octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 86
Schläfli symbol {8,6}
Wythoff symbol 6 | 8 2
Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png
Symmetry group [8,6], (*862)
Dual Order-8 hexagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-6 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,6}.

Symmetry[]

This tiling represents a hyperbolic kaleidoscope of 8 mirrors meeting at a point and bounding regular octagon fundamental domains. This symmetry by orbifold notation is called *33333333 with 8 order-3 mirror intersections. In Coxeter notation can be represented as [8*,6], removing two of three mirrors (passing through the octagon center) in the [8,6] symmetry.

Uniform constructions[]

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 6 points, [8,6,1+], gives [(8,8,3)], (*883). Removing two mirrors as [8,6*], leaves remaining mirrors (*444444).

Four uniform constructions of 8.8.8.8
Uniform
Coloring
H2 tiling 268-1.png H2 tiling 288-2.png H2 tiling 688-5.png
Symmetry [8,6]
(*862)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 6.pngCDel node c3.png
[8,6,1+] = [(8,8,3)]
(*883)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 6.pngCDel node h0.png = CDel node c1.pngCDel split1-88.pngCDel branch c2.png
[8,1+,6]
(*4232)
CDel node c1.pngCDel 8.pngCDel node h0.pngCDel 6.pngCDel node c2.png = CDel label4.pngCDel branch c1.pngCDel 2a2b-cross.pngCDel branch c2.png
[8,6*]
(*444444)
CDel node c1.pngCDel 8.pngCDel node g.pngCDel 6sg.pngCDel node g.png
Symbol {8,6} {8,6}12 r(8,6,8)
Coxeter
diagram
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel split1-88.pngCDel branch.png CDel node 1.pngCDel 8.pngCDel node h0.pngCDel 6.pngCDel node.png = CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch.png CDel node 1.pngCDel 8.pngCDel node g.pngCDel 6sg.pngCDel node g.png

Related polyhedra and tiling[]

This tiling is topologically related as a part of sequence of regular tilings with octagonal faces, starting with the octagonal tiling, with Schläfli symbol {8,n}, and Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel n.pngCDel node.png, progressing to infinity.

n82 symmetry mutations of regular tilings: 8n
Space Spherical Compact hyperbolic Paracompact
Tiling H2-8-3-dual.svg H2 tiling 248-1.png H2 tiling 258-1.png H2 tiling 268-1.png H2 tiling 278-1.png H2 tiling 288-4.png H2 tiling 28i-4.png
Config. 8.8 83 84 86 88 ...
Regular tilings {n,6}
Spherical Euclidean Hyperbolic tilings
Spherical hexagonal hosohedron.png
{2,6}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t2.svg
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 256-4.png
{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 266-4.png
{6,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 267-1.png

CDel node 1.pngCDel 7.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 268-1.png
{8,6}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png
... H2 tiling 26i-1.png
{∞,6}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 6.pngCDel node.png
Uniform octagonal/hexagonal tilings
Symmetry: [8,6], (*862)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 268-1.png H2 tiling 268-3.png H2 tiling 268-2.png H2 tiling 268-6.png H2 tiling 268-4.png H2 tiling 268-5.png H2 tiling 268-7.png
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 268b.png H2chess 268f.png H2chess 268a.png H2chess 268e.png H2chess 268c.png H2chess 268d.png H2checkers 268.png
V86 V6.16.16 V(6.8)2 V8.12.12 V68 V4.6.4.8 V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node h1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h1.png CDel node h.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h.png CDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.png
H2 tiling 466-1.png H2 tiling 388-1.png Uniform tiling 86-snub.png
h{8,6} s{8,6} hr{8,6} s{6,8} h{6,8} hrr{8,6} sr{8,6}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.png
H2chess 466b.png
V(4.6)6 V3.3.8.3.8.3 V(3.4.4.4)2 V3.4.3.4.3.6 V(3.8)8 V3.45 V3.3.6.3.8

See also[]

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[]

Retrieved from ""