Order-6 hexagonal tiling

From Wikipedia, the free encyclopedia
Order-6 hexagonal tiling
Order-6 hexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 66
Schläfli symbol {6,6}
Wythoff symbol 6 | 6 2
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
Symmetry group [6,6], (*662)
Dual
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-6 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,6} and is self-dual.

Symmetry[]

This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *333333 with 6 order-3 mirror intersections. In Coxeter notation can be represented as [6*,6], removing two of three mirrors (passing through the hexagon center) in the [6,6] symmetry.

The even/odd fundamental domains of this kaleidoscope can be seen in the alternating colorings of the CDel node 1.pngCDel split1-66.pngCDel branch.png tiling:

H2 tiling 366-2.png

Related polyhedra and tiling[]

This tiling is topologically related as a part of sequence of regular tilings with order-6 vertices with Schläfli symbol {n,6}, and Coxeter diagram CDel node 1.pngCDel n.pngCDel node.pngCDel 6.pngCDel node.png, progressing to infinity.

Regular tilings {n,6}
Spherical Euclidean Hyperbolic tilings
Spherical hexagonal hosohedron.png
{2,6}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t2.svg
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 256-4.png
{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 266-4.png
{6,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 267-1.png

CDel node 1.pngCDel 7.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 268-1.png
{8,6}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png
... H2 tiling 26i-1.png
{∞,6}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 6.pngCDel node.png

This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel n.pngCDel node.png, progressing to infinity.

*n62 symmetry mutation of regular tilings: {6,n}
Spherical Euclidean Hyperbolic tilings
Hexagonal dihedron.svg
{6,2}
Uniform tiling 63-t0.svg
{6,3}
H2 tiling 246-1.png
{6,4}
H2 tiling 256-1.png
{6,5}
H2 tiling 266-4.png
{6,6}
H2 tiling 267-4.png
H2 tiling 268-4.png
{6,8}
... H2 tiling 26i-4.png
{6,∞}
Uniform hexahexagonal tilings
Symmetry: [6,6], (*662)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png = CDel nodes 10ru.pngCDel split2-66.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel nodes 10ru.pngCDel split2-66.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel nodes.pngCDel split2-66.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-66.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-66.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node 1.png = CDel nodes 11.pngCDel split2-66.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node 1.png =CDel nodes 11.pngCDel split2-66.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 266-1.png H2 tiling 266-3.png H2 tiling 266-2.png H2 tiling 266-6.png H2 tiling 266-4.png H2 tiling 266-5.png H2 tiling 266-7.png
{6,6}
= h{4,6}
t{6,6}
= h2{4,6}
r{6,6}
{6,4}
t{6,6}
= h2{4,6}
{6,6}
= h{4,6}
rr{6,6}
r{6,4}
tr{6,6}
t{6,4}
Uniform duals
CDel node f1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 266b.png H2chess 266f.png H2chess 266a.png H2chess 266e.png H2chess 266c.png H2chess 266d.png H2checkers 266.png
V66 V6.12.12 V6.6.6.6 V6.12.12 V66 V4.6.4.6 V4.12.12
Alternations
[1+,6,6]
(*663)
[6+,6]
(6*3)
[6,1+,6]
(*3232)
[6,6+]
(6*3)
[6,6,1+]
(*663)
[(6,6,2+)]
(2*33)
[6,6]+
(662)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png = CDel branch 10ru.pngCDel split2-66.pngCDel node.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node h1.pngCDel 6.pngCDel node.png = CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.png CDel node.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h1.png = CDel node.pngCDel split1-66.pngCDel branch 01ld.png CDel node h.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node h1.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h1.png CDel node h.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 66-h0.png Uniform tiling verf 34343434.png Uniform tiling 66-h0.png Uniform tiling 64-h1.png Uniform tiling 66-snub.png
h{6,6} s{6,6} hr{6,6} s{6,6} h{6,6} hrr{6,6} sr{6,6}
Similar H2 tilings in *3232 symmetry
Coxeter
diagrams
CDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h0.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel labelh.pngCDel node.pngCDel split1-66.pngCDel nodes 10lu.png CDel branch.pngCDel split2-44.pngCDel node h1.png CDel node h1.pngCDel split1-66.pngCDel nodes.png CDel branch 10ru.pngCDel split2-44.pngCDel node.pngCDel labelh.png CDel node h1.pngCDel split1-66.pngCDel nodes 10lu.png CDel branch 10ru.pngCDel split2-44.pngCDel node h1.png CDel labelh.pngCDel node.pngCDel split1-66.pngCDel nodes 11.png CDel branch 11.pngCDel split2-44.pngCDel node.pngCDel labelh.png
CDel branch 11.pngCDel 2a2b-cross.pngCDel branch.png CDel branch 10.pngCDel 2a2b-cross.pngCDel branch 10.png CDel branch 10.pngCDel 2a2b-cross.pngCDel branch 11.png CDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.png
Vertex
figure
66 (3.4.3.4)2 3.4.6.6.4 6.4.6.4
Image Uniform tiling verf 666666.png Uniform tiling verf 34343434.png Uniform tiling verf 34664.png 3222-uniform tiling-verf4646.png
Dual Uniform tiling verf 666666b.png H2chess 246a.png

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also[]

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

External links[]

Retrieved from ""