Order-8 hexagonal tiling

From Wikipedia, the free encyclopedia
Order-8 hexagonal tiling
Order-8 hexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 68
Schläfli symbol {6,8}
Wythoff symbol 8 | 6 2
Coxeter diagram CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.png
Symmetry group [8,6], (*862)
Dual Order-6 octagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-8 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,8}.

Uniform constructions[]

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 6 points, [6,8,1+], gives [(6,6,4)], (*664). Removing the mirror between the order 8 and 6 points, [6,1+,8], gives (*4232). Removing two mirrors as [6,8*], leaves remaining mirrors (*33333333).

Four uniform constructions of 6.6.6.6.6.6.6.6
Uniform
Coloring
H2 tiling 268-4.png H2 tiling 466-2.png
Symmetry [6,8]
(*862)
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 8.pngCDel node c3.png
[6,8,1+] = [(6,6,4)]
(*664)
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 8.pngCDel node h0.png = CDel node c1.pngCDel split1-66.pngCDel branch c2.png
[6,1+,8]
(*4232)
CDel node c1.pngCDel 8.pngCDel node h0.pngCDel 6.pngCDel node c2.png = CDel label4.pngCDel branch c1.pngCDel 2a2b-cross.pngCDel branch c2.png
[6,8*]
(*33333333)
Symbol {6,8} {6,8}12 r(8,6,8) {6,8}18
Coxeter
diagram
CDel node 1.pngCDel 6.pngCDel node.pngCDel 8.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 8.pngCDel node h0.png = CDel node 1.pngCDel split1-66.pngCDel branch.pngCDel label4.png CDel node 1.pngCDel 6.pngCDel node h0.pngCDel 8.pngCDel node.png = CDel branch 11.pngCDel 2a2b-cross.pngCDel branch.pngCDel label4.png

Symmetry[]

This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with eight squares around every vertex. This symmetry by orbifold notation is called (*444444) with 6 order-4 mirror intersections. In Coxeter notation can be represented as [8,6*], removing two of three mirrors (passing through the square center) in the [8,6] symmetry.

Related polyhedra and tiling[]

Uniform octagonal/hexagonal tilings
Symmetry: [8,6], (*862)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 268-1.png H2 tiling 268-3.png H2 tiling 268-2.png H2 tiling 268-6.png H2 tiling 268-4.png H2 tiling 268-5.png H2 tiling 268-7.png
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 268b.png H2chess 268f.png H2chess 268a.png H2chess 268e.png H2chess 268c.png H2chess 268d.png H2checkers 268.png
V86 V6.16.16 V(6.8)2 V8.12.12 V68 V4.6.4.8 V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node h1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h1.png CDel node h.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h.png CDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.png
H2 tiling 466-1.png H2 tiling 388-1.png Uniform tiling 86-snub.png
h{8,6} s{8,6} hr{8,6} s{6,8} h{6,8} hrr{8,6} sr{8,6}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.png CDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.png
H2chess 466b.png
V(4.6)6 V3.3.8.3.8.3 V(3.4.4.4)2 V3.4.3.4.3.6 V(3.8)8 V3.45 V3.3.6.3.8

See also[]

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[]

Retrieved from ""